abseil-cpp/absl/random/internal/chi_square.cc
Go to the documentation of this file.
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/internal/chi_square.h"
16 
17 #include <cmath>
18 
19 #include "absl/random/internal/distribution_test_util.h"
20 
21 namespace absl {
23 namespace random_internal {
24 namespace {
25 
26 #if defined(__EMSCRIPTEN__)
27 // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found.
28 inline double fma(double x, double y, double z) {
29  return (x * y) + z;
30 }
31 #endif
32 
33 // Use Horner's method to evaluate a polynomial.
34 template <typename T, unsigned N>
35 inline T EvaluatePolynomial(T x, const T (&poly)[N]) {
36 #if !defined(__EMSCRIPTEN__)
37  using std::fma;
38 #endif
39  T p = poly[N - 1];
40  for (unsigned i = 2; i <= N; i++) {
41  p = fma(p, x, poly[N - i]);
42  }
43  return p;
44 }
45 
46 static constexpr int kLargeDOF = 150;
47 
48 // Returns the probability of a normal z-value.
49 //
50 // Adapted from the POZ function in:
51 // Ibbetson D, Algorithm 209
52 // Collected Algorithms of the CACM 1963 p. 616
53 //
54 double POZ(double z) {
55  static constexpr double kP1[] = {
56  0.797884560593, -0.531923007300, 0.319152932694,
57  -0.151968751364, 0.059054035642, -0.019198292004,
58  0.005198775019, -0.001075204047, 0.000124818987,
59  };
60  static constexpr double kP2[] = {
61  0.999936657524, 0.000535310849, -0.002141268741, 0.005353579108,
62  -0.009279453341, 0.011630447319, -0.010557625006, 0.006549791214,
63  -0.002034254874, -0.000794620820, 0.001390604284, -0.000676904986,
64  -0.000019538132, 0.000152529290, -0.000045255659,
65  };
66 
67  const double kZMax = 6.0; // Maximum meaningful z-value.
68  if (z == 0.0) {
69  return 0.5;
70  }
71  double x;
72  double y = 0.5 * std::fabs(z);
73  if (y >= (kZMax * 0.5)) {
74  x = 1.0;
75  } else if (y < 1.0) {
76  double w = y * y;
77  x = EvaluatePolynomial(w, kP1) * y * 2.0;
78  } else {
79  y -= 2.0;
80  x = EvaluatePolynomial(y, kP2);
81  }
82  return z > 0.0 ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5);
83 }
84 
85 // Approximates the survival function of the normal distribution.
86 //
87 // Algorithm 26.2.18, from:
88 // [Abramowitz and Stegun, Handbook of Mathematical Functions,p.932]
89 // http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf
90 //
91 double normal_survival(double z) {
92  // Maybe replace with the alternate formulation.
93  // 0.5 * erfc((x - mean)/(sqrt(2) * sigma))
94  static constexpr double kR[] = {
95  1.0, 0.196854, 0.115194, 0.000344, 0.019527,
96  };
97  double r = EvaluatePolynomial(z, kR);
98  r *= r;
99  return 0.5 / (r * r);
100 }
101 
102 } // namespace
103 
104 // Calculates the critical chi-square value given degrees-of-freedom and a
105 // p-value, usually using bisection. Also known by the name CRITCHI.
106 double ChiSquareValue(int dof, double p) {
107  static constexpr double kChiEpsilon =
108  0.000001; // Accuracy of the approximation.
109  static constexpr double kChiMax =
110  99999.0; // Maximum chi-squared value.
111 
112  const double p_value = 1.0 - p;
113  if (dof < 1 || p_value > 1.0) {
114  return 0.0;
115  }
116 
117  if (dof > kLargeDOF) {
118  // For large degrees of freedom, use the normal approximation by
119  // Wilson, E. B. and Hilferty, M. M. (1931)
120  // chi^2 - mean
121  // Z = --------------
122  // stddev
123  const double z = InverseNormalSurvival(p_value);
124  const double mean = 1 - 2.0 / (9 * dof);
125  const double variance = 2.0 / (9 * dof);
126  // Cannot use this method if the variance is 0.
127  if (variance != 0) {
128  double term = z * std::sqrt(variance) + mean;
129  return dof * (term * term * term);
130  }
131  }
132 
133  if (p_value <= 0.0) return kChiMax;
134 
135  // Otherwise search for the p value by bisection
136  double min_chisq = 0.0;
137  double max_chisq = kChiMax;
138  double current = dof / std::sqrt(p_value);
139  while ((max_chisq - min_chisq) > kChiEpsilon) {
140  if (ChiSquarePValue(current, dof) < p_value) {
141  max_chisq = current;
142  } else {
143  min_chisq = current;
144  }
145  current = (max_chisq + min_chisq) * 0.5;
146  }
147  return current;
148 }
149 
150 // Calculates the p-value (probability) of a given chi-square value
151 // and degrees of freedom.
152 //
153 // Adapted from the POCHISQ function from:
154 // Hill, I. D. and Pike, M. C. Algorithm 299
155 // Collected Algorithms of the CACM 1963 p. 243
156 //
157 double ChiSquarePValue(double chi_square, int dof) {
158  static constexpr double kLogSqrtPi =
159  0.5723649429247000870717135; // Log[Sqrt[Pi]]
160  static constexpr double kInverseSqrtPi =
161  0.5641895835477562869480795; // 1/(Sqrt[Pi])
162 
163  // For large degrees of freedom, use the normal approximation by
164  // Wilson, E. B. and Hilferty, M. M. (1931)
165  // Via Wikipedia:
166  // By the Central Limit Theorem, because the chi-square distribution is the
167  // sum of k independent random variables with finite mean and variance, it
168  // converges to a normal distribution for large k.
169  if (dof > kLargeDOF) {
170  // Re-scale everything.
171  const double chi_square_scaled = std::pow(chi_square / dof, 1.0 / 3);
172  const double mean = 1 - 2.0 / (9 * dof);
173  const double variance = 2.0 / (9 * dof);
174  // If variance is 0, this method cannot be used.
175  if (variance != 0) {
176  const double z = (chi_square_scaled - mean) / std::sqrt(variance);
177  if (z > 0) {
178  return normal_survival(z);
179  } else if (z < 0) {
180  return 1.0 - normal_survival(-z);
181  } else {
182  return 0.5;
183  }
184  }
185  }
186 
187  // The chi square function is >= 0 for any degrees of freedom.
188  // In other words, probability that the chi square function >= 0 is 1.
189  if (chi_square <= 0.0) return 1.0;
190 
191  // If the degrees of freedom is zero, the chi square function is always 0 by
192  // definition. In other words, the probability that the chi square function
193  // is > 0 is zero (chi square values <= 0 have been filtered above).
194  if (dof < 1) return 0;
195 
196  auto capped_exp = [](double x) { return x < -20 ? 0.0 : std::exp(x); };
197  static constexpr double kBigX = 20;
198 
199  double a = 0.5 * chi_square;
200  const bool even = !(dof & 1); // True if dof is an even number.
201  const double y = capped_exp(-a);
202  double s = even ? y : (2.0 * POZ(-std::sqrt(chi_square)));
203 
204  if (dof <= 2) {
205  return s;
206  }
207 
208  chi_square = 0.5 * (dof - 1.0);
209  double z = (even ? 1.0 : 0.5);
210  if (a > kBigX) {
211  double e = (even ? 0.0 : kLogSqrtPi);
212  double c = std::log(a);
213  while (z <= chi_square) {
214  e = std::log(z) + e;
215  s += capped_exp(c * z - a - e);
216  z += 1.0;
217  }
218  return s;
219  }
220 
221  double e = (even ? 1.0 : (kInverseSqrtPi / std::sqrt(a)));
222  double c = 0.0;
223  while (z <= chi_square) {
224  e = e * (a / z);
225  c = c + e;
226  z += 1.0;
227  }
228  return c * y + s;
229 }
230 
231 } // namespace random_internal
233 } // namespace absl
absl::random_internal::InverseNormalSurvival
double InverseNormalSurvival(double x)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:80
y
const double y
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3611
absl::FormatConversionChar::s
@ s
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
xds_manager.p
p
Definition: xds_manager.py:60
z
Uncopyable z
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3612
poly
Definition: hrss.c:917
ABSL_NAMESPACE_END
#define ABSL_NAMESPACE_END
Definition: third_party/abseil-cpp/absl/base/config.h:171
T
#define T(upbtypeconst, upbtype, ctype, default_value)
absl::FormatConversionChar::e
@ e
ABSL_NAMESPACE_BEGIN
#define ABSL_NAMESPACE_BEGIN
Definition: third_party/abseil-cpp/absl/base/config.h:170
absl::random_internal::ChiSquarePValue
double ChiSquarePValue(double chi_square, int dof)
Definition: abseil-cpp/absl/random/internal/chi_square.cc:157
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
N
#define N
Definition: sync_test.cc:37
fix_build_deps.r
r
Definition: fix_build_deps.py:491
absl::random_internal::ChiSquareValue
double ChiSquareValue(int dof, double p)
Definition: abseil-cpp/absl/random/internal/chi_square.cc:106
log
bool log
Definition: abseil-cpp/absl/synchronization/mutex.cc:310
absl
Definition: abseil-cpp/absl/algorithm/algorithm.h:31
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230


grpc
Author(s):
autogenerated on Fri May 16 2025 02:57:53