abseil-cpp/absl/random/internal/distribution_test_util.cc
Go to the documentation of this file.
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/internal/distribution_test_util.h"
16 
17 #include <cassert>
18 #include <cmath>
19 #include <string>
20 #include <vector>
21 
22 #include "absl/base/internal/raw_logging.h"
23 #include "absl/base/macros.h"
24 #include "absl/strings/str_cat.h"
25 #include "absl/strings/str_format.h"
26 
27 namespace absl {
29 namespace random_internal {
30 namespace {
31 
32 #if defined(__EMSCRIPTEN__)
33 // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found.
34 inline double fma(double x, double y, double z) { return (x * y) + z; }
35 #endif
36 
37 } // namespace
38 
40  absl::Span<const double> data_points) {
42 
43  // Compute m1
44  for (double x : data_points) {
45  result.n++;
46  result.mean += x;
47  }
48  result.mean /= static_cast<double>(result.n);
49 
50  // Compute m2, m3, m4
51  for (double x : data_points) {
52  double v = x - result.mean;
53  result.variance += v * v;
54  result.skewness += v * v * v;
55  result.kurtosis += v * v * v * v;
56  }
57  result.variance /= static_cast<double>(result.n - 1);
58 
59  result.skewness /= static_cast<double>(result.n);
60  result.skewness /= std::pow(result.variance, 1.5);
61 
62  result.kurtosis /= static_cast<double>(result.n);
63  result.kurtosis /= std::pow(result.variance, 2.0);
64  return result;
65 
66  // When validating the min/max count, the following confidence intervals may
67  // be of use:
68  // 3.291 * stddev = 99.9% CI
69  // 2.576 * stddev = 99% CI
70  // 1.96 * stddev = 95% CI
71  // 1.65 * stddev = 90% CI
72 }
73 
74 std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments) {
75  return os << absl::StrFormat("mean=%f, stddev=%f, skewness=%f, kurtosis=%f",
76  moments.mean, std::sqrt(moments.variance),
77  moments.skewness, moments.kurtosis);
78 }
79 
80 double InverseNormalSurvival(double x) {
81  // inv_sf(u) = -sqrt(2) * erfinv(2u-1)
82  static constexpr double kSqrt2 = 1.4142135623730950488;
83  return -kSqrt2 * absl::random_internal::erfinv(2 * x - 1.0);
84 }
85 
86 bool Near(absl::string_view msg, double actual, double expected, double bound) {
87  assert(bound > 0.0);
88  double delta = fabs(expected - actual);
89  if (delta < bound) {
90  return true;
91  }
92 
93  std::string formatted = absl::StrCat(
94  msg, " actual=", actual, " expected=", expected, " err=", delta / bound);
95  ABSL_RAW_LOG(INFO, "%s", formatted.c_str());
96  return false;
97 }
98 
99 // TODO(absl-team): Replace with an "ABSL_HAVE_SPECIAL_MATH" and try
100 // to use std::beta(). As of this writing P0226R1 is not implemented
101 // in libc++: http://libcxx.llvm.org/cxx1z_status.html
102 double beta(double p, double q) {
103  // Beta(x, y) = Gamma(x) * Gamma(y) / Gamma(x+y)
104  double lbeta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
105  return std::exp(lbeta);
106 }
107 
108 // Approximation to inverse of the Error Function in double precision.
109 // (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf)
110 double erfinv(double x) {
111 #if !defined(__EMSCRIPTEN__)
112  using std::fma;
113 #endif
114 
115  double w = 0.0;
116  double p = 0.0;
117  w = -std::log((1.0 - x) * (1.0 + x));
118  if (w < 6.250000) {
119  w = w - 3.125000;
120  p = -3.6444120640178196996e-21;
121  p = fma(p, w, -1.685059138182016589e-19);
122  p = fma(p, w, 1.2858480715256400167e-18);
123  p = fma(p, w, 1.115787767802518096e-17);
124  p = fma(p, w, -1.333171662854620906e-16);
125  p = fma(p, w, 2.0972767875968561637e-17);
126  p = fma(p, w, 6.6376381343583238325e-15);
127  p = fma(p, w, -4.0545662729752068639e-14);
128  p = fma(p, w, -8.1519341976054721522e-14);
129  p = fma(p, w, 2.6335093153082322977e-12);
130  p = fma(p, w, -1.2975133253453532498e-11);
131  p = fma(p, w, -5.4154120542946279317e-11);
132  p = fma(p, w, 1.051212273321532285e-09);
133  p = fma(p, w, -4.1126339803469836976e-09);
134  p = fma(p, w, -2.9070369957882005086e-08);
135  p = fma(p, w, 4.2347877827932403518e-07);
136  p = fma(p, w, -1.3654692000834678645e-06);
137  p = fma(p, w, -1.3882523362786468719e-05);
138  p = fma(p, w, 0.0001867342080340571352);
139  p = fma(p, w, -0.00074070253416626697512);
140  p = fma(p, w, -0.0060336708714301490533);
141  p = fma(p, w, 0.24015818242558961693);
142  p = fma(p, w, 1.6536545626831027356);
143  } else if (w < 16.000000) {
144  w = std::sqrt(w) - 3.250000;
145  p = 2.2137376921775787049e-09;
146  p = fma(p, w, 9.0756561938885390979e-08);
147  p = fma(p, w, -2.7517406297064545428e-07);
148  p = fma(p, w, 1.8239629214389227755e-08);
149  p = fma(p, w, 1.5027403968909827627e-06);
150  p = fma(p, w, -4.013867526981545969e-06);
151  p = fma(p, w, 2.9234449089955446044e-06);
152  p = fma(p, w, 1.2475304481671778723e-05);
153  p = fma(p, w, -4.7318229009055733981e-05);
154  p = fma(p, w, 6.8284851459573175448e-05);
155  p = fma(p, w, 2.4031110387097893999e-05);
156  p = fma(p, w, -0.0003550375203628474796);
157  p = fma(p, w, 0.00095328937973738049703);
158  p = fma(p, w, -0.0016882755560235047313);
159  p = fma(p, w, 0.0024914420961078508066);
160  p = fma(p, w, -0.0037512085075692412107);
161  p = fma(p, w, 0.005370914553590063617);
162  p = fma(p, w, 1.0052589676941592334);
163  p = fma(p, w, 3.0838856104922207635);
164  } else {
165  w = std::sqrt(w) - 5.000000;
166  p = -2.7109920616438573243e-11;
167  p = fma(p, w, -2.5556418169965252055e-10);
168  p = fma(p, w, 1.5076572693500548083e-09);
169  p = fma(p, w, -3.7894654401267369937e-09);
170  p = fma(p, w, 7.6157012080783393804e-09);
171  p = fma(p, w, -1.4960026627149240478e-08);
172  p = fma(p, w, 2.9147953450901080826e-08);
173  p = fma(p, w, -6.7711997758452339498e-08);
174  p = fma(p, w, 2.2900482228026654717e-07);
175  p = fma(p, w, -9.9298272942317002539e-07);
176  p = fma(p, w, 4.5260625972231537039e-06);
177  p = fma(p, w, -1.9681778105531670567e-05);
178  p = fma(p, w, 7.5995277030017761139e-05);
179  p = fma(p, w, -0.00021503011930044477347);
180  p = fma(p, w, -0.00013871931833623122026);
181  p = fma(p, w, 1.0103004648645343977);
182  p = fma(p, w, 4.8499064014085844221);
183  }
184  return p * x;
185 }
186 
187 namespace {
188 
189 // Direct implementation of AS63, BETAIN()
190 // https://www.jstor.org/stable/2346797?seq=3#page_scan_tab_contents.
191 //
192 // BETAIN(x, p, q, beta)
193 // x: the value of the upper limit x.
194 // p: the value of the parameter p.
195 // q: the value of the parameter q.
196 // beta: the value of ln B(p, q)
197 //
198 double BetaIncompleteImpl(const double x, const double p, const double q,
199  const double beta) {
200  if (p < (p + q) * x) {
201  // Incomplete beta function is symmetrical, so return the complement.
202  return 1. - BetaIncompleteImpl(1.0 - x, q, p, beta);
203  }
204 
205  double psq = p + q;
206  const double kErr = 1e-14;
207  const double xc = 1. - x;
208  const double pre =
209  std::exp(p * std::log(x) + (q - 1.) * std::log(xc) - beta) / p;
210 
211  double term = 1.;
212  double ai = 1.;
213  double result = 1.;
214  int ns = static_cast<int>(q + xc * psq);
215 
216  // Use the soper reduction forumla.
217  double rx = (ns == 0) ? x : x / xc;
218  double temp = q - ai;
219  for (;;) {
220  term = term * temp * rx / (p + ai);
221  result = result + term;
222  temp = std::fabs(term);
223  if (temp < kErr && temp < kErr * result) {
224  return result * pre;
225  }
226  ai = ai + 1.;
227  --ns;
228  if (ns >= 0) {
229  temp = q - ai;
230  if (ns == 0) {
231  rx = x;
232  }
233  } else {
234  temp = psq;
235  psq = psq + 1.;
236  }
237  }
238 
239  // NOTE: See also TOMS Alogrithm 708.
240  // http://www.netlib.org/toms/index.html
241  //
242  // NOTE: The NWSC library also includes BRATIO / ISUBX (p87)
243  // https://archive.org/details/DTIC_ADA261511/page/n75
244 }
245 
246 // Direct implementation of AS109, XINBTA(p, q, beta, alpha)
247 // https://www.jstor.org/stable/2346798?read-now=1&seq=4#page_scan_tab_contents
248 // https://www.jstor.org/stable/2346887?seq=1#page_scan_tab_contents
249 //
250 // XINBTA(p, q, beta, alhpa)
251 // p: the value of the parameter p.
252 // q: the value of the parameter q.
253 // beta: the value of ln B(p, q)
254 // alpha: the value of the lower tail area.
255 //
256 double BetaIncompleteInvImpl(const double p, const double q, const double beta,
257  const double alpha) {
258  if (alpha < 0.5) {
259  // Inverse Incomplete beta function is symmetrical, return the complement.
260  return 1. - BetaIncompleteInvImpl(q, p, beta, 1. - alpha);
261  }
262  const double kErr = 1e-14;
263  double value = kErr;
264 
265  // Compute the initial estimate.
266  {
267  double r = std::sqrt(-std::log(alpha * alpha));
268  double y =
269  r - fma(r, 0.27061, 2.30753) / fma(r, fma(r, 0.04481, 0.99229), 1.0);
270  if (p > 1. && q > 1.) {
271  r = (y * y - 3.) / 6.;
272  double s = 1. / (p + p - 1.);
273  double t = 1. / (q + q - 1.);
274  double h = 2. / s + t;
275  double w =
276  y * std::sqrt(h + r) / h - (t - s) * (r + 5. / 6. - t / (3. * h));
277  value = p / (p + q * std::exp(w + w));
278  } else {
279  r = q + q;
280  double t = 1.0 / (9. * q);
281  double u = 1.0 - t + y * std::sqrt(t);
282  t = r * (u * u * u);
283  if (t <= 0) {
284  value = 1.0 - std::exp((std::log((1.0 - alpha) * q) + beta) / q);
285  } else {
286  t = (4.0 * p + r - 2.0) / t;
287  if (t <= 1) {
288  value = std::exp((std::log(alpha * p) + beta) / p);
289  } else {
290  value = 1.0 - 2.0 / (t + 1.0);
291  }
292  }
293  }
294  }
295 
296  // Solve for x using a modified newton-raphson method using the function
297  // BetaIncomplete.
298  {
299  value = std::max(value, kErr);
300  value = std::min(value, 1.0 - kErr);
301 
302  const double r = 1.0 - p;
303  const double t = 1.0 - q;
304  double y;
305  double yprev = 0;
306  double sq = 1;
307  double prev = 1;
308  for (;;) {
309  if (value < 0 || value > 1.0) {
310  // Error case; value went infinite.
311  return std::numeric_limits<double>::infinity();
312  } else if (value == 0 || value == 1) {
313  y = value;
314  } else {
315  y = BetaIncompleteImpl(value, p, q, beta);
316  if (!std::isfinite(y)) {
317  return y;
318  }
319  }
320  y = (y - alpha) *
321  std::exp(beta + r * std::log(value) + t * std::log(1.0 - value));
322  if (y * yprev <= 0) {
324  }
325  double g = 1.0;
326  for (;;) {
327  const double adj = g * y;
328  const double adj_sq = adj * adj;
329  if (adj_sq >= prev) {
330  g = g / 3.0;
331  continue;
332  }
333  const double tx = value - adj;
334  if (tx < 0 || tx > 1) {
335  g = g / 3.0;
336  continue;
337  }
338  if (prev < kErr) {
339  return value;
340  }
341  if (y * y < kErr) {
342  return value;
343  }
344  if (tx == value) {
345  return value;
346  }
347  if (tx == 0 || tx == 1) {
348  g = g / 3.0;
349  continue;
350  }
351  value = tx;
352  yprev = y;
353  break;
354  }
355  }
356  }
357 
358  // NOTES: See also: Asymptotic inversion of the incomplete beta function.
359  // https://core.ac.uk/download/pdf/82140723.pdf
360  //
361  // NOTE: See the Boost library documentation as well:
362  // https://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_beta/ibeta_function.html
363 }
364 
365 } // namespace
366 
367 double BetaIncomplete(const double x, const double p, const double q) {
368  // Error cases.
369  if (p < 0 || q < 0 || x < 0 || x > 1.0) {
370  return std::numeric_limits<double>::infinity();
371  }
372  if (x == 0 || x == 1) {
373  return x;
374  }
375  // ln(Beta(p, q))
376  double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
377  return BetaIncompleteImpl(x, p, q, beta);
378 }
379 
380 double BetaIncompleteInv(const double p, const double q, const double alpha) {
381  // Error cases.
382  if (p < 0 || q < 0 || alpha < 0 || alpha > 1.0) {
383  return std::numeric_limits<double>::infinity();
384  }
385  if (alpha == 0 || alpha == 1) {
386  return alpha;
387  }
388  // ln(Beta(p, q))
389  double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
390  return BetaIncompleteInvImpl(p, q, beta, alpha);
391 }
392 
393 // Given `num_trials` trials each with probability `p` of success, the
394 // probability of no failures is `p^k`. To ensure the probability of a failure
395 // is no more than `p_fail`, it must be that `p^k == 1 - p_fail`. This function
396 // computes `p` from that equation.
397 double RequiredSuccessProbability(const double p_fail, const int num_trials) {
398  double p = std::exp(std::log(1.0 - p_fail) / static_cast<double>(num_trials));
399  ABSL_ASSERT(p > 0);
400  return p;
401 }
402 
403 double ZScore(double expected_mean, const DistributionMoments& moments) {
404  return (moments.mean - expected_mean) /
405  (std::sqrt(moments.variance) /
406  std::sqrt(static_cast<double>(moments.n)));
407 }
408 
409 double MaxErrorTolerance(double acceptance_probability) {
410  double one_sided_pvalue = 0.5 * (1.0 - acceptance_probability);
411  const double max_err = InverseNormalSurvival(one_sided_pvalue);
412  ABSL_ASSERT(max_err > 0);
413  return max_err;
414 }
415 
416 } // namespace random_internal
418 } // namespace absl
_gevent_test_main.result
result
Definition: _gevent_test_main.py:96
absl::random_internal::InverseNormalSurvival
double InverseNormalSurvival(double x)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:80
fix_build_deps.temp
temp
Definition: fix_build_deps.py:488
absl::StrCat
std::string StrCat(const AlphaNum &a, const AlphaNum &b)
Definition: abseil-cpp/absl/strings/str_cat.cc:98
absl::StrFormat
ABSL_MUST_USE_RESULT std::string StrFormat(const FormatSpec< Args... > &format, const Args &... args)
Definition: abseil-cpp/absl/strings/str_format.h:338
absl::random_internal::RequiredSuccessProbability
double RequiredSuccessProbability(const double p_fail, const int num_trials)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:397
absl::random_internal::DistributionMoments
Definition: abseil-cpp/absl/random/internal/distribution_test_util.h:37
absl::Span
Definition: abseil-cpp/absl/types/span.h:152
y
const double y
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3611
absl::string_view
Definition: abseil-cpp/absl/strings/string_view.h:167
testing::internal::string
::std::string string
Definition: bloaty/third_party/protobuf/third_party/googletest/googletest/include/gtest/internal/gtest-port.h:881
u
OPENSSL_EXPORT pem_password_cb void * u
Definition: pem.h:351
absl::random_internal::erfinv
double erfinv(double x)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:110
absl::random_internal::ZScore
double ZScore(double expected_mean, const DistributionMoments &moments)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:403
absl::FormatConversionChar::s
@ s
absl::random_internal::DistributionMoments::mean
double mean
Definition: abseil-cpp/absl/random/internal/distribution_test_util.h:39
xds_manager.p
p
Definition: xds_manager.py:60
z
Uncopyable z
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3612
ABSL_NAMESPACE_END
#define ABSL_NAMESPACE_END
Definition: third_party/abseil-cpp/absl/base/config.h:171
absl::random_internal::BetaIncomplete
double BetaIncomplete(const double x, const double p, const double q)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:367
absl::random_internal::ComputeDistributionMoments
DistributionMoments ComputeDistributionMoments(absl::Span< const double > data_points)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:39
absl::FormatConversionChar::e
@ e
ABSL_NAMESPACE_BEGIN
#define ABSL_NAMESPACE_BEGIN
Definition: third_party/abseil-cpp/absl/base/config.h:170
absl::msg
const char * msg
Definition: abseil-cpp/absl/synchronization/mutex.cc:272
max
int max
Definition: bloaty/third_party/zlib/examples/enough.c:170
python_utils.jobset.INFO
INFO
Definition: jobset.py:111
setup.v
v
Definition: third_party/bloaty/third_party/capstone/bindings/python/setup.py:42
absl::random_internal::DistributionMoments::skewness
double skewness
Definition: abseil-cpp/absl/random/internal/distribution_test_util.h:41
absl::random_internal::DistributionMoments::n
size_t n
Definition: abseil-cpp/absl/random/internal/distribution_test_util.h:38
absl::random_internal::BetaIncompleteInv
double BetaIncompleteInv(const double p, const double q, const double alpha)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:380
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
absl::random_internal::beta
double beta(double p, double q)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:102
min
#define min(a, b)
Definition: qsort.h:83
g
struct @717 g
absl::random_internal::operator<<
std::ostream & operator<<(std::ostream &os, const DistributionMoments &moments)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:74
value
const char * value
Definition: hpack_parser_table.cc:165
ABSL_ASSERT
#define ABSL_ASSERT(expr)
Definition: abseil-cpp/absl/base/macros.h:97
absl::str_format_internal::LengthMod::t
@ t
fix_build_deps.r
r
Definition: fix_build_deps.py:491
absl::random_internal::DistributionMoments::variance
double variance
Definition: abseil-cpp/absl/random/internal/distribution_test_util.h:40
absl::random_internal::MaxErrorTolerance
double MaxErrorTolerance(double acceptance_probability)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:409
log
bool log
Definition: abseil-cpp/absl/synchronization/mutex.cc:310
absl::str_format_internal::LengthMod::q
@ q
ns
static int64_t ns
Definition: bloaty/third_party/re2/util/benchmark.cc:43
absl
Definition: abseil-cpp/absl/algorithm/algorithm.h:31
isfinite
#define isfinite
Definition: bloaty/third_party/protobuf/conformance/third_party/jsoncpp/jsoncpp.cpp:4014
absl::random_internal::Near
bool Near(absl::string_view msg, double actual, double expected, double bound)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:86
absl::str_format_internal::LengthMod::h
@ h
ABSL_RAW_LOG
#define ABSL_RAW_LOG(severity,...)
Definition: abseil-cpp/absl/base/internal/raw_logging.h:44
absl::random_internal::DistributionMoments::kurtosis
double kurtosis
Definition: abseil-cpp/absl/random/internal/distribution_test_util.h:42


grpc
Author(s):
autogenerated on Fri May 16 2025 02:58:16