15 #include "absl/random/internal/distribution_test_util.h"
22 #include "absl/base/internal/raw_logging.h"
23 #include "absl/base/macros.h"
24 #include "absl/strings/str_cat.h"
25 #include "absl/strings/str_format.h"
29 namespace random_internal {
32 #if defined(__EMSCRIPTEN__)
34 inline double fma(
double x,
double y,
double z) {
return (x *
y) +
z; }
44 for (
double x : data_points) {
51 for (
double x : data_points) {
75 return os <<
absl::StrFormat(
"mean=%f, stddev=%f, skewness=%f, kurtosis=%f",
82 static constexpr
double kSqrt2 = 1.4142135623730950488;
88 double delta = fabs(expected - actual);
94 msg,
" actual=", actual,
" expected=", expected,
" err=", delta / bound);
102 double beta(
double p,
double q) {
104 double lbeta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
105 return std::exp(lbeta);
111 #if !defined(__EMSCRIPTEN__)
120 p = -3.6444120640178196996e-21;
121 p = fma(p, w, -1.685059138182016589
e-19);
122 p = fma(p, w, 1.2858480715256400167
e-18);
123 p = fma(p, w, 1.115787767802518096
e-17);
124 p = fma(p, w, -1.333171662854620906
e-16);
125 p = fma(p, w, 2.0972767875968561637
e-17);
126 p = fma(p, w, 6.6376381343583238325
e-15);
127 p = fma(p, w, -4.0545662729752068639
e-14);
128 p = fma(p, w, -8.1519341976054721522
e-14);
129 p = fma(p, w, 2.6335093153082322977
e-12);
130 p = fma(p, w, -1.2975133253453532498
e-11);
131 p = fma(p, w, -5.4154120542946279317
e-11);
132 p = fma(p, w, 1.051212273321532285
e-09);
133 p = fma(p, w, -4.1126339803469836976
e-09);
134 p = fma(p, w, -2.9070369957882005086
e-08);
135 p = fma(p, w, 4.2347877827932403518
e-07);
136 p = fma(p, w, -1.3654692000834678645
e-06);
137 p = fma(p, w, -1.3882523362786468719
e-05);
138 p = fma(p, w, 0.0001867342080340571352);
139 p = fma(p, w, -0.00074070253416626697512);
140 p = fma(p, w, -0.0060336708714301490533);
141 p = fma(p, w, 0.24015818242558961693);
142 p = fma(p, w, 1.6536545626831027356);
143 }
else if (w < 16.000000) {
144 w = std::sqrt(w) - 3.250000;
145 p = 2.2137376921775787049e-09;
146 p = fma(p, w, 9.0756561938885390979
e-08);
147 p = fma(p, w, -2.7517406297064545428
e-07);
148 p = fma(p, w, 1.8239629214389227755
e-08);
149 p = fma(p, w, 1.5027403968909827627
e-06);
150 p = fma(p, w, -4.013867526981545969
e-06);
151 p = fma(p, w, 2.9234449089955446044
e-06);
152 p = fma(p, w, 1.2475304481671778723
e-05);
153 p = fma(p, w, -4.7318229009055733981
e-05);
154 p = fma(p, w, 6.8284851459573175448
e-05);
155 p = fma(p, w, 2.4031110387097893999
e-05);
156 p = fma(p, w, -0.0003550375203628474796);
157 p = fma(p, w, 0.00095328937973738049703);
158 p = fma(p, w, -0.0016882755560235047313);
159 p = fma(p, w, 0.0024914420961078508066);
160 p = fma(p, w, -0.0037512085075692412107);
161 p = fma(p, w, 0.005370914553590063617);
162 p = fma(p, w, 1.0052589676941592334);
163 p = fma(p, w, 3.0838856104922207635);
165 w = std::sqrt(w) - 5.000000;
166 p = -2.7109920616438573243e-11;
167 p = fma(p, w, -2.5556418169965252055
e-10);
168 p = fma(p, w, 1.5076572693500548083
e-09);
169 p = fma(p, w, -3.7894654401267369937
e-09);
170 p = fma(p, w, 7.6157012080783393804
e-09);
171 p = fma(p, w, -1.4960026627149240478
e-08);
172 p = fma(p, w, 2.9147953450901080826
e-08);
173 p = fma(p, w, -6.7711997758452339498
e-08);
174 p = fma(p, w, 2.2900482228026654717
e-07);
175 p = fma(p, w, -9.9298272942317002539
e-07);
176 p = fma(p, w, 4.5260625972231537039
e-06);
177 p = fma(p, w, -1.9681778105531670567
e-05);
178 p = fma(p, w, 7.5995277030017761139
e-05);
179 p = fma(p, w, -0.00021503011930044477347);
180 p = fma(p, w, -0.00013871931833623122026);
181 p = fma(p, w, 1.0103004648645343977);
182 p = fma(p, w, 4.8499064014085844221);
198 double BetaIncompleteImpl(
const double x,
const double p,
const double q,
200 if (p < (p + q) * x) {
202 return 1. - BetaIncompleteImpl(1.0 - x, q, p,
beta);
206 const double kErr = 1e-14;
207 const double xc = 1. -
x;
214 int ns =
static_cast<int>(q + xc * psq);
217 double rx = (
ns == 0) ? x : x / xc;
218 double temp = q - ai;
220 term = term *
temp * rx / (p + ai);
222 temp = std::fabs(term);
256 double BetaIncompleteInvImpl(
const double p,
const double q,
const double beta,
257 const double alpha) {
260 return 1. - BetaIncompleteInvImpl(q, p,
beta, 1. - alpha);
262 const double kErr = 1
e-14;
267 double r = std::sqrt(-
std::log(alpha * alpha));
269 r - fma(
r, 0.27061, 2.30753) / fma(
r, fma(
r, 0.04481, 0.99229), 1.0);
270 if (p > 1. && q > 1.) {
271 r = (
y *
y - 3.) / 6.;
272 double s = 1. / (
p +
p - 1.);
273 double t = 1. / (
q +
q - 1.);
274 double h = 2. /
s +
t;
276 y * std::sqrt(h +
r) /
h - (
t -
s) * (
r + 5. / 6. - t / (3. * h));
277 value =
p / (
p +
q * std::exp(w + w));
280 double t = 1.0 / (9. *
q);
281 double u = 1.0 -
t +
y * std::sqrt(t);
286 t = (4.0 *
p +
r - 2.0) /
t;
290 value = 1.0 - 2.0 / (
t + 1.0);
302 const double r = 1.0 -
p;
303 const double t = 1.0 -
q;
309 if (value < 0 || value > 1.0) {
311 return std::numeric_limits<double>::infinity();
322 if (
y * yprev <= 0) {
327 const double adj =
g *
y;
328 const double adj_sq = adj * adj;
329 if (adj_sq >= prev) {
333 const double tx =
value - adj;
334 if (tx < 0 || tx > 1) {
347 if (tx == 0 || tx == 1) {
369 if (p < 0 || q < 0 || x < 0 || x > 1.0) {
370 return std::numeric_limits<double>::infinity();
372 if (
x == 0 ||
x == 1) {
376 double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
377 return BetaIncompleteImpl(
x, p, q,
beta);
382 if (p < 0 || q < 0 || alpha < 0 || alpha > 1.0) {
383 return std::numeric_limits<double>::infinity();
385 if (alpha == 0 || alpha == 1) {
389 double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
390 return BetaIncompleteInvImpl(p, q,
beta, alpha);
398 double p = std::exp(
std::log(1.0 - p_fail) /
static_cast<double>(num_trials));
404 return (moments.
mean - expected_mean) /
406 std::sqrt(
static_cast<double>(moments.
n)));
410 double one_sided_pvalue = 0.5 * (1.0 - acceptance_probability);