10 #ifndef EIGEN_REAL_QZ_H
11 #define EIGEN_REAL_QZ_H
57 template<
typename _MatrixType>
class RealQZ
105 m_S(
A.rows(),
A.cols()),
106 m_T(
A.rows(),
A.cols()),
107 m_Q(
A.rows(),
A.cols()),
108 m_Z(
A.rows(),
A.cols()),
216 template<
typename MatrixType>
220 const Index dim = m_S.cols();
225 m_T.template triangularView<StrictlyLower>().setZero();
228 m_S.applyOnTheLeft(m_Q.adjoint());
231 m_Z = MatrixType::Identity(dim,dim);
233 for (
Index j=0; j<=dim-3; j++) {
234 for (
Index i=dim-1; i>=j+2; i--) {
237 if(m_S.coeff(i,j) != 0)
239 G.
makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
240 m_S.coeffRef(i,j) =
Scalar(0.0);
241 m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.
adjoint());
242 m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.
adjoint());
245 m_Q.applyOnTheRight(i-1,i,G);
248 if(m_T.coeff(i,i-1)!=
Scalar(0))
250 G.
makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
251 m_T.coeffRef(i,i-1) =
Scalar(0.0);
252 m_S.applyOnTheRight(i,i-1,G);
253 m_T.topRows(i).applyOnTheRight(i,i-1,G);
256 m_Z.applyOnTheLeft(i,i-1,G.
adjoint());
263 template<
typename MatrixType>
271 m_normOfS += m_S.col(j).segment(0, (
std::min)(
size,j+2)).cwiseAbs().sum();
272 m_normOfT += m_T.row(j).segment(j,
size - j).cwiseAbs().sum();
278 template<
typename MatrixType>
285 Scalar s =
abs(m_S.coeff(res-1,res-1)) +
abs(m_S.coeff(res,res));
296 template<
typename MatrixType>
310 template<
typename MatrixType>
315 const Index dim=m_S.cols();
318 Index j = findSmallDiagEntry(i,i+1);
322 Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
323 template solve<OnTheRight>(m_S.template block<2,2>(i,i));
325 Scalar q = p*p + STi(1,0)*STi(0,1);
336 m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.
adjoint());
337 m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.
adjoint());
340 m_Q.applyOnTheRight(i,i+1,G);
342 G.
makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i));
343 m_S.topRows(i+2).applyOnTheRight(i+1,i,G);
344 m_T.topRows(i+2).applyOnTheRight(i+1,i,G);
347 m_Z.applyOnTheLeft(i+1,i,G.
adjoint());
349 m_S.coeffRef(i+1,i) =
Scalar(0.0);
350 m_T.coeffRef(i+1,i) =
Scalar(0.0);
355 pushDownZero(j,i,i+1);
360 template<
typename MatrixType>
364 const Index dim = m_S.cols();
365 for (
Index zz=z; zz<l; zz++)
368 Index firstColS = zz>f ? (zz-1) : zz;
369 G.
makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
370 m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.
adjoint());
371 m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.
adjoint());
372 m_T.coeffRef(zz+1,zz+1) =
Scalar(0.0);
375 m_Q.applyOnTheRight(zz,zz+1,G);
379 G.
makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
380 m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
381 m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
382 m_S.coeffRef(zz+1,zz-1) =
Scalar(0.0);
385 m_Z.applyOnTheLeft(zz,zz-1,G.
adjoint());
389 G.
makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1));
390 m_S.applyOnTheRight(l,l-1,G);
391 m_T.applyOnTheRight(l,l-1,G);
392 m_S.coeffRef(l,l-1)=
Scalar(0.0);
395 m_Z.applyOnTheLeft(l,l-1,G.
adjoint());
399 template<
typename MatrixType>
403 const Index dim = m_S.cols();
411 a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
412 a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1),
413 b12=m_T.coeff(f+0,f+1),
414 b11i=
Scalar(1.0)/m_T.coeff(f+0,f+0),
415 b22i=
Scalar(1.0)/m_T.coeff(f+1,f+1),
416 a87=m_S.coeff(l-1,l-2),
417 a98=m_S.coeff(l-0,l-1),
418 b77i=
Scalar(1.0)/m_T.coeff(l-2,l-2),
419 b88i=
Scalar(1.0)/m_T.coeff(l-1,l-1);
423 x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i
424 - a11*a21*b12*b11i*b11i*b22i;
425 y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
426 - a21*a21*b12*b11i*b11i*b22i;
427 z = a21*a32*b11i*b22i;
432 x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
433 (m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
434 y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
437 else if (iter>23 && !(iter%8))
440 x = internal::random<Scalar>(-1.0,1.0);
441 y = internal::random<Scalar>(-1.0,1.0);
442 z = internal::random<Scalar>(-1.0,1.0);
453 a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1),
454 a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1),
455 a32 = m_S.coeff(f+2,f+1),
457 a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
458 a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l),
460 b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1),
461 b22 = m_T.coeff(f+1,f+1),
463 b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
464 b99 = m_T.coeff(l,l);
466 x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
467 + a12/b22 - (a11/b11)*(b12/b22);
468 y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
474 for (
Index k=f; k<=l-2; k++)
483 hr.makeHouseholderInPlace(tau, beta);
484 essential2 = hr.template bottomRows<2>();
486 m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.
data());
487 m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.
data());
489 m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.
data());
491 m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) =
Scalar(0.0);
494 hr << m_T.
coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
495 hr.makeHouseholderInPlace(tau, beta);
496 essential2 = hr.template bottomRows<2>();
501 tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
502 tmp += m_S.col(k+2).head(lr);
503 m_S.col(k+2).head(lr) -= tau*tmp;
504 m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
506 tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
507 tmp += m_T.col(k+2).head(lr);
508 m_T.col(k+2).head(lr) -= tau*tmp;
509 m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
515 tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
517 m_Z.row(k+2) -= tau*tmp;
518 m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
523 G.
makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
524 m_S.applyOnTheRight(k+1,k,G);
525 m_T.applyOnTheRight(k+1,k,G);
528 m_Z.applyOnTheLeft(k+1,k,G.
adjoint());
529 m_T.coeffRef(k+1,k) =
Scalar(0.0);
532 x = m_S.coeff(k+1,k);
533 y = m_S.coeff(k+2,k);
535 z = m_S.coeff(k+3,k);
540 m_S.applyOnTheLeft(l-1,l,G.
adjoint());
541 m_T.applyOnTheLeft(l-1,l,G.
adjoint());
543 m_Q.applyOnTheRight(l-1,l,G);
544 m_S.coeffRef(l,l-2) =
Scalar(0.0);
547 G.
makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
548 m_S.applyOnTheRight(l,l-1,G);
549 m_T.applyOnTheRight(l,l-1,G);
551 m_Z.applyOnTheLeft(l,l-1,G.
adjoint());
552 m_T.coeffRef(l,l-1) =
Scalar(0.0);
555 template<
typename MatrixType>
559 const Index dim = A_in.cols();
562 && B_in.rows()==dim && B_in.cols()==dim
563 &&
"Need square matrices of the same dimension");
565 m_isInitialized =
true;
566 m_computeQZ = computeQZ;
567 m_S = A_in; m_T = B_in;
568 m_workspace.resize(dim*2);
572 hessenbergTriangular();
580 while (l>0 && local_iter<m_maxIters)
582 f = findSmallSubdiagEntry(l);
584 if (f>0) m_S.coeffRef(f,f-1) =
Scalar(0.0);
599 Index z = findSmallDiagEntry(f,l);
610 step(f,l, local_iter);
625 for(
Index i=0; i<dim-1; ++i)
627 if(m_S.coeff(i+1, i) !=
Scalar(0))
633 m_S.applyOnTheLeft(i,i+1,j_left);
634 m_S.applyOnTheRight(i,i+1,j_right);
635 m_T.applyOnTheLeft(i,i+1,j_left);
636 m_T.applyOnTheRight(i,i+1,j_right);
637 m_T(i+1,i) = m_T(i,i+1) =
Scalar(0);
640 m_Q.applyOnTheRight(i,i+1,j_left.
transpose());
641 m_Z.applyOnTheLeft(i,i+1,j_right.
transpose());
654 #endif //EIGEN_REAL_QZ