Go to the documentation of this file.
11 #ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
12 #define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
47 template<
typename _MatrixType>
161 template<
typename MatrixType>
165 eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
170 &&
"invalid option parameter");
184 MatrixType matC = matA.template selfadjointView<Lower>();
185 cholB.
matrixL().template solveInPlace<OnTheLeft>(matC);
186 cholB.
matrixU().template solveInPlace<OnTheRight>(matC);
192 cholB.
matrixU().solveInPlace(Base::m_eivec);
197 MatrixType matC = matA.template selfadjointView<Lower>();
205 cholB.
matrixU().solveInPlace(Base::m_eivec);
210 MatrixType matC = matA.template selfadjointView<Lower>();
218 Base::m_eivec = cholB.
matrixL() * Base::m_eivec;
226 #endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
Map< Matrix< Scalar, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > MatrixType
SelfAdjointEigenSolver< _MatrixType > Base
GeneralizedSelfAdjointEigenSolver(Index size)
Constructor, pre-allocates memory for dynamic-size matrices.
GeneralizedSelfAdjointEigenSolver(const MatrixType &matA, const MatrixType &matB, int options=ComputeEigenvectors|Ax_lBx)
Constructor; computes generalized eigendecomposition of given matrix pencil.
Computes eigenvalues and eigenvectors of selfadjoint matrices.
Traits::MatrixL matrixL() const
GeneralizedSelfAdjointEigenSolver()
Default constructor for fixed-size matrices.
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem.
static constexpr size_t size(Tuple< Args... > &)
Provides access to the number of elements in a tuple as a compile-time constant expression.
Traits::MatrixU matrixU() const
GeneralizedSelfAdjointEigenSolver & compute(const MatrixType &matA, const MatrixType &matB, int options=ComputeEigenvectors|Ax_lBx)
Computes generalized eigendecomposition of given matrix pencil.
control_box_rst
Author(s): Christoph Rösmann
autogenerated on Wed Mar 2 2022 00:05:46