Modules | |
Global aligned box typedefs | |
Classes | |
class | Eigen::AlignedBox< _Scalar, _AmbientDim > |
An axis aligned box. More... | |
class | Eigen::AngleAxis< _Scalar > |
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. More... | |
class | Eigen::Homogeneous< MatrixType, _Direction > |
Expression of one (or a set of) homogeneous vector(s) More... | |
class | Eigen::Hyperplane< _Scalar, _AmbientDim > |
A hyperplane. More... | |
class | Eigen::Map< const Quaternion< _Scalar >, _Options > |
Quaternion expression mapping a constant memory buffer. More... | |
class | Eigen::Map< Quaternion< _Scalar >, _Options > |
Expression of a quaternion from a memory buffer. More... | |
class | Eigen::ParametrizedLine< _Scalar, _AmbientDim > |
A parametrized line. More... | |
class | Eigen::Quaternion< _Scalar > |
The quaternion class used to represent 3D orientations and rotations. More... | |
class | Eigen::QuaternionBase< Derived > |
Base class for quaternion expressions. More... | |
class | Eigen::Rotation2D< _Scalar > |
Represents a rotation/orientation in a 2 dimensional space. More... | |
class | Eigen::Scaling< _Scalar, _Dim > |
Represents a possibly non uniform scaling transformation. More... | |
class | Eigen::Transform< _Scalar, _Dim > |
Represents an homogeneous transformation in a N dimensional space. More... | |
class | Eigen::Translation< _Scalar, _Dim > |
Represents a translation transformation. More... | |
Functions | |
Matrix< Scalar, 3, 1 > | Eigen::MatrixBase< Derived >::eulerAngles (Index a0, Index a1, Index a2) const |
template<typename Derived , typename OtherDerived > | |
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type | Eigen::umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true) |
Returns the transformation between two point sets. More... | |
typedef Transform<double,2,Affine> Eigen::Affine2d |
Definition at line 656 of file Geometry/Transform.h.
typedef Transform<float,2,Affine> Eigen::Affine2f |
Definition at line 652 of file Geometry/Transform.h.
typedef Transform<double,3,Affine> Eigen::Affine3d |
Definition at line 658 of file Geometry/Transform.h.
typedef Transform<float,3,Affine> Eigen::Affine3f |
Definition at line 654 of file Geometry/Transform.h.
typedef Transform<double,2,AffineCompact> Eigen::AffineCompact2d |
Definition at line 665 of file Geometry/Transform.h.
typedef Transform<float,2,AffineCompact> Eigen::AffineCompact2f |
Definition at line 661 of file Geometry/Transform.h.
typedef Transform<double,3,AffineCompact> Eigen::AffineCompact3d |
Definition at line 667 of file Geometry/Transform.h.
typedef Transform<float,3,AffineCompact> Eigen::AffineCompact3f |
Definition at line 663 of file Geometry/Transform.h.
typedef DiagonalMatrix<double,2> Eigen::AlignedScaling2d |
Definition at line 144 of file Geometry/Scaling.h.
typedef DiagonalMatrix<float, 2> Eigen::AlignedScaling2f |
Definition at line 142 of file Geometry/Scaling.h.
typedef DiagonalMatrix<double,3> Eigen::AlignedScaling3d |
Definition at line 148 of file Geometry/Scaling.h.
typedef DiagonalMatrix<float, 3> Eigen::AlignedScaling3f |
Definition at line 146 of file Geometry/Scaling.h.
typedef AngleAxis< double > Eigen::AngleAxisd |
double precision angle-axis type
Definition at line 152 of file Eigen2Support/Geometry/AngleAxis.h.
typedef AngleAxis< float > Eigen::AngleAxisf |
single precision angle-axis type
Definition at line 149 of file Eigen2Support/Geometry/AngleAxis.h.
typedef Transform<double,2,Isometry> Eigen::Isometry2d |
Definition at line 647 of file Geometry/Transform.h.
typedef Transform<float,2,Isometry> Eigen::Isometry2f |
Definition at line 643 of file Geometry/Transform.h.
typedef Transform<double,3,Isometry> Eigen::Isometry3d |
Definition at line 649 of file Geometry/Transform.h.
typedef Transform<float,3,Isometry> Eigen::Isometry3f |
Definition at line 645 of file Geometry/Transform.h.
typedef Transform<double,2,Projective> Eigen::Projective2d |
Definition at line 674 of file Geometry/Transform.h.
typedef Transform<float,2,Projective> Eigen::Projective2f |
Definition at line 670 of file Geometry/Transform.h.
typedef Transform<double,3,Projective> Eigen::Projective3d |
Definition at line 676 of file Geometry/Transform.h.
typedef Transform<float,3,Projective> Eigen::Projective3f |
Definition at line 672 of file Geometry/Transform.h.
typedef Quaternion< double > Eigen::Quaterniond |
double precision quaternion type
Definition at line 211 of file Eigen2Support/Geometry/Quaternion.h.
typedef Quaternion< float > Eigen::Quaternionf |
single precision quaternion type
Definition at line 208 of file Eigen2Support/Geometry/Quaternion.h.
typedef Map<Quaternion<double>, Aligned> Eigen::QuaternionMapAlignedd |
Map a 16-bits aligned array of double precision scalars as a quaternion
Definition at line 412 of file Geometry/Quaternion.h.
typedef Map<Quaternion<float>, Aligned> Eigen::QuaternionMapAlignedf |
Map a 16-bits aligned array of double precision scalars as a quaternion
Definition at line 409 of file Geometry/Quaternion.h.
typedef Map<Quaternion<double>, 0> Eigen::QuaternionMapd |
Map an unaligned array of double precision scalar as a quaternion
Definition at line 406 of file Geometry/Quaternion.h.
typedef Map<Quaternion<float>, 0> Eigen::QuaternionMapf |
Map an unaligned array of single precision scalar as a quaternion
Definition at line 403 of file Geometry/Quaternion.h.
typedef Rotation2D< double > Eigen::Rotation2Dd |
double precision 2D rotation type
Definition at line 119 of file Eigen2Support/Geometry/Rotation2D.h.
typedef Rotation2D< float > Eigen::Rotation2Df |
single precision 2D rotation type
Definition at line 116 of file Eigen2Support/Geometry/Rotation2D.h.
typedef Scaling<double,2> Eigen::Scaling2d |
Definition at line 141 of file Eigen2Support/Geometry/Scaling.h.
typedef Scaling<float, 2> Eigen::Scaling2f |
Definition at line 140 of file Eigen2Support/Geometry/Scaling.h.
typedef Scaling<double,3> Eigen::Scaling3d |
Definition at line 143 of file Eigen2Support/Geometry/Scaling.h.
typedef Scaling<float, 3> Eigen::Scaling3f |
Definition at line 142 of file Eigen2Support/Geometry/Scaling.h.
typedef Transform<double,2> Eigen::Transform2d |
Definition at line 286 of file Eigen2Support/Geometry/Transform.h.
typedef Transform<float,2> Eigen::Transform2f |
Definition at line 282 of file Eigen2Support/Geometry/Transform.h.
typedef Transform<double,3> Eigen::Transform3d |
Definition at line 288 of file Eigen2Support/Geometry/Transform.h.
typedef Transform<float,3> Eigen::Transform3f |
Definition at line 284 of file Eigen2Support/Geometry/Transform.h.
typedef Translation< double, 2 > Eigen::Translation2d |
Definition at line 144 of file Eigen2Support/Geometry/Translation.h.
typedef Translation< float, 2 > Eigen::Translation2f |
Definition at line 143 of file Eigen2Support/Geometry/Translation.h.
typedef Translation< double, 3 > Eigen::Translation3d |
Definition at line 146 of file Eigen2Support/Geometry/Translation.h.
typedef Translation< float, 3 > Eigen::Translation3f |
Definition at line 145 of file Eigen2Support/Geometry/Translation.h.
|
inline |
*this
using the convention defined by the triplet (a0,a1,a2)Each of the three parameters a0,a1,a2 represents the respective rotation axis as an integer in {0,1,2}. For instance, in:
"2" represents the z axis and "0" the x axis, etc. The returned angles are such that we have the following equality:
This corresponds to the right-multiply conventions (with right hand side frames).
The returned angles are in the ranges [0:pi]x[0:pi]x[-pi:pi].
Definition at line 37 of file EulerAngles.h.
internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type Eigen::umeyama | ( | const MatrixBase< Derived > & | src, |
const MatrixBase< OtherDerived > & | dst, | ||
bool | with_scaling = true |
||
) |
Returns the transformation between two point sets.
The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
It estimates parameters and such that
is minimized.
The algorithm is based on the analysis of the covariance matrix of the input point sets and where is corresponding to the dimension (which is typically small). The analysis is involving the SVD having a complexity of though the actual computational effort lies in the covariance matrix computation which has an asymptotic lower bound of when the input point sets have dimension .
Currently the method is working only for floating point matrices.
src | Source points . |
dst | Destination points . |
with_scaling | Sets when false is passed. |
minimizing the resudiual above. This transformation is always returned as an Eigen::Matrix.