|
| void | compute (const MatrixType &matrix) |
| |
| template<typename PositiveType , typename UnitaryType > |
| void | computePositiveUnitary (PositiveType *positive, UnitaryType *unitary) const |
| |
| template<typename UnitaryType , typename PositiveType > |
| void | computePositiveUnitary (UnitaryType *positive, PositiveType *unitary) const |
| |
| template<typename RotationType , typename ScalingType > |
| void | computeRotationScaling (RotationType *unitary, ScalingType *positive) const |
| |
| template<typename ScalingType , typename RotationType > |
| void | computeScalingRotation (ScalingType *positive, RotationType *unitary) const |
| |
| template<typename UnitaryType , typename PositiveType > |
| void | computeUnitaryPositive (UnitaryType *unitary, PositiveType *positive) const |
| |
| const MatrixUType & | matrixU () const |
| |
| const MatrixVType & | matrixV () const |
| |
| const SingularValuesType & | singularValues () const |
| |
| template<typename OtherDerived , typename ResultType > |
| bool | solve (const MatrixBase< OtherDerived > &b, ResultType *result) const |
| |
| SVD & | sort () |
| |
| | SVD () |
| |
| | SVD (const MatrixType &matrix) |
| |
|
| enum | { PacketSize = internal::packet_traits<Scalar>::size,
AlignmentMask = int(PacketSize)-1,
MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
} |
| |
| typedef Matrix< Scalar, MatrixType::RowsAtCompileTime, 1 > | ColVector |
| |
| typedef Matrix< Scalar, MatrixType::RowsAtCompileTime, MinSize > | MatrixUType |
| |
| typedef Matrix< Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime > | MatrixVType |
| |
| typedef NumTraits< typename MatrixType::Scalar >::Real | RealScalar |
| |
| typedef Matrix< Scalar, MatrixType::ColsAtCompileTime, 1 > | RowVector |
| |
| typedef MatrixType::Scalar | Scalar |
| |
| typedef Matrix< Scalar, MinSize, 1 > | SingularValuesType |
| |
template<typename MatrixType>
class Eigen::SVD< MatrixType >
Standard SVD decomposition of a matrix and associated features.
- Parameters
-
| MatrixType | the type of the matrix of which we are computing the SVD decomposition |
This class performs a standard SVD decomposition of a real matrix A of size M x N with M >= N.
- See also
- MatrixBase::SVD()
Definition at line 30 of file SVD.h.
template<typename MatrixType>
template<typename UnitaryType , typename PositiveType >
| void Eigen::SVD< MatrixType >::computePositiveUnitary |
( |
UnitaryType * |
positive, |
|
|
PositiveType * |
unitary |
|
) |
| const |
template<typename MatrixType >
template<typename RotationType , typename ScalingType >
| void Eigen::SVD< MatrixType >::computeRotationScaling |
( |
RotationType * |
rotation, |
|
|
ScalingType * |
scaling |
|
) |
| const |
decomposes the matrix as a product rotation x scaling, the scaling being not necessarily positive.
If either pointer is zero, the corresponding computation is skipped.
This method requires the Geometry module.
- See also
- computeScalingRotation(), computeUnitaryPositive()
Definition at line 584 of file SVD.h.
template<typename MatrixType >
template<typename ScalingType , typename RotationType >
| void Eigen::SVD< MatrixType >::computeScalingRotation |
( |
ScalingType * |
scaling, |
|
|
RotationType * |
rotation |
|
) |
| const |
decomposes the matrix as a product scaling x rotation, the scaling being not necessarily positive.
If either pointer is zero, the corresponding computation is skipped.
This method requires the Geometry module.
- See also
- computeRotationScaling(), computeUnitaryPositive()
Definition at line 610 of file SVD.h.
template<typename MatrixType >
template<typename UnitaryType , typename PositiveType >
| void Eigen::SVD< MatrixType >::computeUnitaryPositive |
( |
UnitaryType * |
unitary, |
|
|
PositiveType * |
positive |
|
) |
| const |