cxx11_tensor_broadcast_sycl.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli Codeplay Software Ltd.
6 // Ralph Potter Codeplay Software Ltd.
7 // Luke Iwanski Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 #define EIGEN_TEST_NO_LONGDOUBLE
15 #define EIGEN_TEST_NO_COMPLEX
16 
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
18 #define EIGEN_USE_SYCL
19 
20 #include "main.h"
21 #include <unsupported/Eigen/CXX11/Tensor>
22 
23 using Eigen::array;
24 using Eigen::SyclDevice;
25 using Eigen::Tensor;
26 using Eigen::TensorMap;
27 
28 template <typename DataType, int DataLayout, typename IndexType>
29 static void test_broadcast_sycl_fixed(const Eigen::SyclDevice &sycl_device){
30 
31  // BROADCAST test:
32  IndexType inDim1=2;
33  IndexType inDim2=3;
34  IndexType inDim3=5;
35  IndexType inDim4=7;
36  IndexType bDim1=2;
37  IndexType bDim2=3;
38  IndexType bDim3=1;
39  IndexType bDim4=4;
40  array<IndexType, 4> in_range = {{inDim1, inDim2, inDim3, inDim4}};
41  array<IndexType, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}};
42  array<IndexType, 4> out_range; // = in_range * broadcasts
43  for (size_t i = 0; i < out_range.size(); ++i)
44  out_range[i] = in_range[i] * broadcasts[i];
45 
48 
49  for (size_t i = 0; i < in_range.size(); ++i)
50  VERIFY_IS_EQUAL(out.dimension(i), out_range[i]);
51 
52 
53  for (IndexType i = 0; i < input.size(); ++i)
54  input(i) = static_cast<DataType>(i);
55 
56  DataType * gpu_in_data = static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(DataType)));
57  DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType)));
58 
59  TensorMap<TensorFixedSize<DataType, Sizes<2, 3, 5, 7>, DataLayout, IndexType>> gpu_in(gpu_in_data, in_range);
60  TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_out(gpu_out_data, out_range);
61  sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(DataType));
62  gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts);
63  sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType));
64 
65  for (IndexType i = 0; i < inDim1*bDim1; ++i) {
66  for (IndexType j = 0; j < inDim2*bDim2; ++j) {
67  for (IndexType k = 0; k < inDim3*bDim3; ++k) {
68  for (IndexType l = 0; l < inDim4*bDim4; ++l) {
69  VERIFY_IS_APPROX(input(i%2,j%3,k%5,l%7), out(i,j,k,l));
70  }
71  }
72  }
73  }
74  printf("Broadcast Test with fixed size Passed\n");
75  sycl_device.deallocate(gpu_in_data);
76  sycl_device.deallocate(gpu_out_data);
77 }
78 
79 template <typename DataType, int DataLayout, typename IndexType>
80 static void test_broadcast_sycl(const Eigen::SyclDevice &sycl_device){
81 
82  // BROADCAST test:
83  IndexType inDim1=2;
84  IndexType inDim2=3;
85  IndexType inDim3=5;
86  IndexType inDim4=7;
87  IndexType bDim1=2;
88  IndexType bDim2=3;
89  IndexType bDim3=1;
90  IndexType bDim4=4;
91  array<IndexType, 4> in_range = {{inDim1, inDim2, inDim3, inDim4}};
92  array<IndexType, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}};
93  array<IndexType, 4> out_range; // = in_range * broadcasts
94  for (size_t i = 0; i < out_range.size(); ++i)
95  out_range[i] = in_range[i] * broadcasts[i];
96 
99 
100  for (size_t i = 0; i < in_range.size(); ++i)
101  VERIFY_IS_EQUAL(out.dimension(i), out_range[i]);
102 
103 
104  for (IndexType i = 0; i < input.size(); ++i)
105  input(i) = static_cast<DataType>(i);
106 
107  DataType * gpu_in_data = static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(DataType)));
108  DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType)));
109 
110  TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_in(gpu_in_data, in_range);
111  TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_out(gpu_out_data, out_range);
112  sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(DataType));
113  gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts);
114  sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType));
115 
116  for (IndexType i = 0; i < inDim1*bDim1; ++i) {
117  for (IndexType j = 0; j < inDim2*bDim2; ++j) {
118  for (IndexType k = 0; k < inDim3*bDim3; ++k) {
119  for (IndexType l = 0; l < inDim4*bDim4; ++l) {
120  VERIFY_IS_APPROX(input(i%inDim1,j%inDim2,k%inDim3,l%inDim4), out(i,j,k,l));
121  }
122  }
123  }
124  }
125  printf("Broadcast Test Passed\n");
126  sycl_device.deallocate(gpu_in_data);
127  sycl_device.deallocate(gpu_out_data);
128 }
129 
130 template<typename DataType> void sycl_broadcast_test_per_device(const cl::sycl::device& d){
131  std::cout << "Running on " << d.template get_info<cl::sycl::info::device::name>() << std::endl;
132  QueueInterface queueInterface(d);
133  auto sycl_device = Eigen::SyclDevice(&queueInterface);
134  test_broadcast_sycl<DataType, RowMajor, int64_t>(sycl_device);
135  test_broadcast_sycl<DataType, ColMajor, int64_t>(sycl_device);
136  test_broadcast_sycl_fixed<DataType, RowMajor, int64_t>(sycl_device);
137  test_broadcast_sycl_fixed<DataType, ColMajor, int64_t>(sycl_device);
138 }
139 
140 EIGEN_DECLARE_TEST(cxx11_tensor_broadcast_sycl) {
141  for (const auto& device :Eigen::get_sycl_supported_devices()) {
142  CALL_SUBTEST(sycl_broadcast_test_per_device<float>(device));
143  }
144 }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const
Definition: Tensor.h:103
int array[24]
EIGEN_DECLARE_TEST(cxx11_tensor_broadcast_sycl)
EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE std::size_t size()
Definition: EmulateArray.h:44
std::ofstream out("Result.txt")
#define VERIFY_IS_APPROX(a, b)
static const Line3 l(Rot3(), 1, 1)
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:386
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex TotalSize() const
A tensor expression mapping an existing array of data.
TensorDevice< TensorMap< PlainObjectType, Options_, MakePointer_ >, DeviceType > device(const DeviceType &dev)
Definition: TensorBase.h:1145
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar * data()
Definition: Tensor.h:104
#define CALL_SUBTEST(FUNC)
Definition: main.h:399
static void test_broadcast_sycl(const Eigen::SyclDevice &sycl_device)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const
Definition: Tensor.h:101
void sycl_broadcast_test_per_device(const cl::sycl::device &d)
static void test_broadcast_sycl_fixed(const Eigen::SyclDevice &sycl_device)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
Definition: Tensor.h:102
std::ptrdiff_t j
static const int DataLayout
The tensor class.
Definition: Tensor.h:63


gtsam
Author(s):
autogenerated on Tue Jul 4 2023 02:34:07