TensorInflation.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2015 Ke Yang <yangke@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
12 
13 namespace Eigen {
14 
22 namespace internal {
23 template<typename Strides, typename XprType>
24 struct traits<TensorInflationOp<Strides, XprType> > : public traits<XprType>
25 {
26  typedef typename XprType::Scalar Scalar;
28  typedef typename XprTraits::StorageKind StorageKind;
29  typedef typename XprTraits::Index Index;
30  typedef typename XprType::Nested Nested;
32  static const int NumDimensions = XprTraits::NumDimensions;
33  static const int Layout = XprTraits::Layout;
34  typedef typename XprTraits::PointerType PointerType;
35 };
36 
37 template<typename Strides, typename XprType>
39 {
41 };
42 
43 template<typename Strides, typename XprType>
44 struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type>
45 {
47 };
48 
49 } // end namespace internal
50 
51 template<typename Strides, typename XprType>
52 class TensorInflationOp : public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors>
53 {
54  public:
57  typedef typename XprType::CoeffReturnType CoeffReturnType;
61 
63  : m_xpr(expr), m_strides(strides) {}
64 
66  const Strides& strides() const { return m_strides; }
67 
70  expression() const { return m_xpr; }
71 
72  protected:
73  typename XprType::Nested m_xpr;
74  const Strides m_strides;
75 };
76 
77 // Eval as rvalue
78 template<typename Strides, typename ArgType, typename Device>
79 struct TensorEvaluator<const TensorInflationOp<Strides, ArgType>, Device>
80 {
82  typedef typename XprType::Index Index;
85  typedef typename XprType::Scalar Scalar;
88  static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
91 
92  enum {
93  IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
95  BlockAccess = false,
96  PreferBlockAccess = false,
98  CoordAccess = false, // to be implemented
99  RawAccess = false
100  };
101 
102  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
104  //===--------------------------------------------------------------------===//
105 
106  EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
107  : m_impl(op.expression(), device), m_strides(op.strides())
108  {
109  m_dimensions = m_impl.dimensions();
110  // Expand each dimension to the inflated dimension.
111  for (int i = 0; i < NumDims; ++i) {
112  m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1;
113  }
114 
115  // Remember the strides for fast division.
116  for (int i = 0; i < NumDims; ++i) {
117  m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]);
118  }
119 
120  const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
121  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
122  m_outputStrides[0] = 1;
123  m_inputStrides[0] = 1;
124  for (int i = 1; i < NumDims; ++i) {
125  m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
126  m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
127  }
128  } else { // RowMajor
129  m_outputStrides[NumDims-1] = 1;
130  m_inputStrides[NumDims-1] = 1;
131  for (int i = NumDims - 2; i >= 0; --i) {
132  m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
133  m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
134  }
135  }
136  }
137 
138  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
139 
140  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) {
141  m_impl.evalSubExprsIfNeeded(NULL);
142  return true;
143  }
145  m_impl.cleanup();
146  }
147 
148  // Computes the input index given the output index. Returns true if the output
149  // index doesn't fall into a hole.
150  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool getInputIndex(Index index, Index* inputIndex) const
151  {
152  eigen_assert(index < dimensions().TotalSize());
153  *inputIndex = 0;
154  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
156  for (int i = NumDims - 1; i > 0; --i) {
157  const Index idx = index / m_outputStrides[i];
158  if (idx != idx / m_fastStrides[i] * m_strides[i]) {
159  return false;
160  }
161  *inputIndex += idx / m_strides[i] * m_inputStrides[i];
162  index -= idx * m_outputStrides[i];
163  }
164  if (index != index / m_fastStrides[0] * m_strides[0]) {
165  return false;
166  }
167  *inputIndex += index / m_strides[0];
168  return true;
169  } else {
171  for (int i = 0; i < NumDims - 1; ++i) {
172  const Index idx = index / m_outputStrides[i];
173  if (idx != idx / m_fastStrides[i] * m_strides[i]) {
174  return false;
175  }
176  *inputIndex += idx / m_strides[i] * m_inputStrides[i];
177  index -= idx * m_outputStrides[i];
178  }
179  if (index != index / m_fastStrides[NumDims-1] * m_strides[NumDims-1]) {
180  return false;
181  }
182  *inputIndex += index / m_strides[NumDims - 1];
183  }
184  return true;
185  }
186 
187  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
188  {
189  Index inputIndex = 0;
190  if (getInputIndex(index, &inputIndex)) {
191  return m_impl.coeff(inputIndex);
192  } else {
193  return Scalar(0);
194  }
195  }
196 
197  // TODO(yangke): optimize this function so that we can detect and produce
198  // all-zero packets
199  template<int LoadMode>
200  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
201  {
202  EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
203  eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
204 
207  for (int i = 0; i < PacketSize; ++i) {
208  values[i] = coeff(index+i);
209  }
210  PacketReturnType rslt = internal::pload<PacketReturnType>(values);
211  return rslt;
212  }
213 
215  const double compute_cost = NumDims * (3 * TensorOpCost::DivCost<Index>() +
216  3 * TensorOpCost::MulCost<Index>() +
217  2 * TensorOpCost::AddCost<Index>());
218  const double input_size = m_impl.dimensions().TotalSize();
219  const double output_size = m_dimensions.TotalSize();
220  if (output_size == 0)
221  return TensorOpCost();
222  return m_impl.costPerCoeff(vectorized) +
223  TensorOpCost(sizeof(CoeffReturnType) * input_size / output_size, 0,
224  compute_cost, vectorized, PacketSize);
225  }
226 
227  EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
228 
229 #ifdef EIGEN_USE_SYCL
230  // binding placeholder accessors to a command group handler for SYCL
231  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
232  m_impl.bind(cgh);
233  }
234 #endif
235 
236  protected:
237  Dimensions m_dimensions;
241  const Strides m_strides;
243 };
244 
245 } // end namespace Eigen
246 
247 #endif // EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
SCALAR Scalar
Definition: bench_gemm.cpp:46
#define EIGEN_STRONG_INLINE
Definition: Macros.h:917
Eigen::internal::traits< TensorInflationOp >::Index Index
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(const XprType &expr, const Strides &strides)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool getInputIndex(Index index, Index *inputIndex) const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
leaf::MyValues values
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
A cost model used to limit the number of threads used for evaluating tensor expression.
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:127
#define EIGEN_ALIGN_MAX
EIGEN_DEVICE_FUNC const internal::remove_all< typename XprType::Nested >::type & expression() const
Eigen::internal::traits< TensorInflationOp >::Scalar Scalar
Generic expression where a coefficient-wise binary operator is applied to two expressions.
Definition: CwiseBinaryOp.h:77
Eigen::NumTraits< Scalar >::Real RealScalar
EIGEN_ALWAYS_INLINE DSizes< IndexType, NumDims > strides(const DSizes< IndexType, NumDims > &dimensions)
Definition: TensorBlock.h:26
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
#define eigen_assert(x)
Definition: Macros.h:1037
EIGEN_STRONG_INLINE TensorEvaluator(const XprType &op, const Device &device)
#define NULL
Definition: ccolamd.c:609
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
array< internal::TensorIntDivisor< Index >, NumDims > m_fastStrides
Eigen::internal::traits< TensorInflationOp >::StorageKind StorageKind
The tensor base class.
Definition: TensorBase.h:973
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:976
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
XprType::CoeffReturnType CoeffReturnType
Eigen::internal::nested< TensorInflationOp >::type Nested
EIGEN_DEVICE_FUNC const Strides & strides() const
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:55
const std::vector< size_t > dimensions
#define EIGEN_UNROLL_LOOP
Definition: Macros.h:1461


gtsam
Author(s):
autogenerated on Tue Jul 4 2023 02:37:04