Namespaces | Classes | Typedefs | Enumerations | Functions | Variables
Eigen Namespace Reference

Namespaces

 internal
 

Classes

class  AutoDiffChainHessian
 
class  AutoDiffChainHessianSparse
 
class  AutoDiffChainJacobian
 
class  AutoDiffChainJacobianSparse
 
class  AutoDiffScalar
 
class  FiniteDiffChainHessian
 
class  FiniteDiffChainJacobian
 
struct  NumTraits< AutoDiffScalar< DerType > >
 
struct  NumTraits< AutoDiffScalar< SparseVector< DerType_ > > >
 
struct  ScalarBinaryOpTraits< AutoDiffScalar< DerType >, typename DerType::Scalar, BinOp >
 
struct  ScalarBinaryOpTraits< typename DerType::Scalar, AutoDiffScalar< DerType >, BinOp >
 

Typedefs

template<typename T >
using MatrixType = Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic >
 
typedef Eigen::Ref< Eigen::MatrixXd > MatrixXdRef
 
typedef const Eigen::Ref< const Eigen::MatrixXd > & MatrixXdRefConst
 
typedef Eigen::Ref< Eigen::VectorXd > VectorXdRef
 
typedef const Eigen::Ref< const Eigen::VectorXd > & VectorXdRefConst
 Convenience wrapper for storing references to sub-matrices/vectors. More...
 

Enumerations

enum  NumericalDiffMode { Forward, Central }
 

Functions

template<typename DerTypeA , typename DerTypeB >
const AutoDiffScalar< Matrix< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar, Dynamic, 1 > > atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b)
 
template<typename DerTypeA , typename DerTypeB >
const AutoDiffScalar< SparseVector< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar > > atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b)
 
template<typename DerType >
const AutoDiffScalar< DerType > & conj (const AutoDiffScalar< DerType > &x)
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (abs, using std::abs;return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() *(x.value()< 0 ? -1 :1));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sqrt, using std::sqrt;Scalar sqrtx=sqrt(x.value());return Eigen::MakeAutoDiffScalar(sqrtx, x.derivatives() *(Scalar(0.5)/sqrtx));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sin, using std::sin;using std::cos;return Eigen::MakeAutoDiffScalar(sin(x.value()), x.derivatives() *cos(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (log, using std::log;return Eigen::MakeAutoDiffScalar(log(x.value()), x.derivatives() *(Scalar(1)/x.value()));) template< typename DerType > inline const Eigen
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (tan, using std::tan;using std::cos;return Eigen::MakeAutoDiffScalar(tan(x.value()), x.derivatives() *(Scalar(1)/numext::abs2(cos(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (acos, using std::sqrt;using std::acos;return Eigen::MakeAutoDiffScalar(acos(x.value()), x.derivatives() *(Scalar(-1)/sqrt(1 - numext::abs2(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sinh, using std::sinh;using std::cosh;return Eigen::MakeAutoDiffScalar(sinh(x.value()), x.derivatives() *cosh(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh
 
void fromMsg (const geometry_msgs::Pose &msg, Eigen::Affine3d &out)
 
void fromMsg (const geometry_msgs::Quaternion &msg, Eigen::Quaterniond &out)
 
void fromMsg (const geometry_msgs::Twist &msg, Eigen::Matrix< double, 6, 1 > &out)
 
void fromMsg (const geometry_msgs::Point &msg, Eigen::Vector3d &out)
 
void fromMsg (const geometry_msgs::Pose &msg, Eigen::Isometry3d &out)
 
Eigen::VectorXd IdentityTransform ()
 
template<typename DerType >
DerType::Scalar imag (const AutoDiffScalar< DerType > &)
 
template<typename NewDerType >
AutoDiffScalar< NewDerType > MakeAutoDiffScalar (const typename NewDerType::Scalar &value, const NewDerType &der)
 
template<typename Scalar , typename... Dims>
Eigen::Tensor< Scalar, sizeof...(Dims)> MatrixToTensor (const MatrixType< Scalar > &matrix, Dims... dims)
 
template<typename DerType >
const AutoDiffScalar< DerType > & real (const AutoDiffScalar< DerType > &x)
 
 return (x<=y ? ADS(x) :ADS(y))
 
 return (x >=y ? ADS(x) :ADS(y))
 
 return (x< y ? ADS(x) :ADS(y))
 
 return (x > y ? ADS(x) :ADS(y))
 
template<typename Scalar , int rank, typename sizeType >
MatrixType< Scalar > TensorToMatrix (const Eigen::Tensor< Scalar, rank > &tensor, const sizeType rows, const sizeType cols)
 
geometry_msgs::Quaternion toMsg (const Eigen::Quaterniond &in)
 
geometry_msgs::Pose toMsg (const Eigen::Affine3d &in)
 
geometry_msgs::Twist toMsg (const Eigen::Matrix< double, 6, 1 > &in)
 
geometry_msgs::Pose toMsg (const Eigen::Isometry3d &in)
 
geometry_msgs::Point toMsg (const Eigen::Vector3d &in)
 
Eigen::VectorXd VectorTransform (double px=0.0, double py=0.0, double pz=0.0, double qx=0.0, double qy=0.0, double qz=0.0, double qw=1.0)
 

Variables

Scalar expx = exp(x.value())
 
const T & y
 

Typedef Documentation

◆ MatrixType

template<typename T >
using Eigen::MatrixType = typedef Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>

Definition at line 61 of file conversions.h.

◆ MatrixXdRef

typedef Eigen::Ref<Eigen::MatrixXd> Eigen::MatrixXdRef

Definition at line 55 of file conversions.h.

◆ MatrixXdRefConst

typedef const Eigen::Ref<const Eigen::MatrixXd>& Eigen::MatrixXdRefConst

Definition at line 53 of file conversions.h.

◆ VectorXdRef

typedef Eigen::Ref<Eigen::VectorXd> Eigen::VectorXdRef

Definition at line 54 of file conversions.h.

◆ VectorXdRefConst

typedef const Eigen::Ref<const Eigen::VectorXd>& Eigen::VectorXdRefConst

Convenience wrapper for storing references to sub-matrices/vectors.

Definition at line 52 of file conversions.h.

Enumeration Type Documentation

◆ NumericalDiffMode

Enumerator
Forward 
Central 

Definition at line 35 of file finitediff_common.h.

Function Documentation

◆ atan2() [1/2]

template<typename DerTypeA , typename DerTypeB >
const AutoDiffScalar<Matrix<typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar, Dynamic, 1> > Eigen::atan2 ( const AutoDiffScalar< DerTypeA > &  a,
const AutoDiffScalar< DerTypeB > &  b 
)
inline

Definition at line 721 of file autodiff_scalar.h.

◆ atan2() [2/2]

template<typename DerTypeA , typename DerTypeB >
const AutoDiffScalar<SparseVector<typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar> > Eigen::atan2 ( const AutoDiffScalar< DerTypeA > &  a,
const AutoDiffScalar< DerTypeB > &  b 
)
inline

Definition at line 739 of file autodiff_scalar.h.

◆ conj()

template<typename DerType >
const AutoDiffScalar<DerType>& Eigen::conj ( const AutoDiffScalar< DerType > &  x)
inline

Definition at line 628 of file autodiff_scalar.h.

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [1/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( abs  ,
using std::abs;return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() *(x.value()< 0 ? -1 :1));   
)

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [2/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( sqrt  ,
using std::sqrt;Scalar  sqrtx = sqrt(x.value()); return Eigen::MakeAutoDiffScalar(sqrtx, x.derivatives() * (Scalar(0.5) / sqrtx)); 
)

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [3/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( sin  ,
using std::sin;using std::cos;return Eigen::MakeAutoDiffScalar(sin(x.value()), x.derivatives() *cos(x.value()));   
)

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [4/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( log  ,
using std::log;return Eigen::MakeAutoDiffScalar(log(x.value()), x.derivatives() *(Scalar(1)/x.value()));   
) const

Definition at line 705 of file autodiff_scalar.h.

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [5/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( tan  ,
using std::tan;using std::cos;return Eigen::MakeAutoDiffScalar(tan(x.value()), x.derivatives() *(Scalar(1)/numext::abs2(cos(x.value()))));   
)

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [6/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( acos  ,
using std::sqrt;using std::acos;return Eigen::MakeAutoDiffScalar(acos(x.value()), x.derivatives() *(Scalar(-1)/sqrt(1 - numext::abs2(x.value()))));   
)

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [7/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( sinh  ,
using std::sinh;using std::cosh;return Eigen::MakeAutoDiffScalar(sinh(x.value()), x.derivatives() *cosh(x.value()));   
)

◆ IdentityTransform()

Eigen::VectorXd Eigen::IdentityTransform ( )

Definition at line 44 of file conversions.cpp.

◆ imag()

template<typename DerType >
DerType::Scalar Eigen::imag ( const AutoDiffScalar< DerType > &  )
inline

Definition at line 638 of file autodiff_scalar.h.

◆ MakeAutoDiffScalar()

template<typename NewDerType >
AutoDiffScalar<NewDerType> Eigen::MakeAutoDiffScalar ( const typename NewDerType::Scalar &  value,
const NewDerType &  der 
)
inline

Definition at line 51 of file autodiff_scalar.h.

◆ MatrixToTensor()

template<typename Scalar , typename... Dims>
Eigen::Tensor<Scalar, sizeof...(Dims)> Eigen::MatrixToTensor ( const MatrixType< Scalar > &  matrix,
Dims...  dims 
)
inline

Definition at line 69 of file conversions.h.

◆ real()

template<typename DerType >
const AutoDiffScalar<DerType>& Eigen::real ( const AutoDiffScalar< DerType > &  x)
inline

Definition at line 633 of file autodiff_scalar.h.

◆ return() [1/4]

Eigen::return ( x<=y ?   ADSx) :ADS(y)

◆ return() [2/4]

Eigen::return ( x >=y ?   ADSx) :ADS(y)

◆ return() [3/4]

Eigen::return ( )

◆ return() [4/4]

Eigen::return ( x  ,
y ?   ADSx) :ADS(y 
)

◆ TensorToMatrix()

template<typename Scalar , int rank, typename sizeType >
MatrixType<Scalar> Eigen::TensorToMatrix ( const Eigen::Tensor< Scalar, rank > &  tensor,
const sizeType  rows,
const sizeType  cols 
)
inline

Definition at line 63 of file conversions.h.

◆ VectorTransform()

Eigen::VectorXd Eigen::VectorTransform ( double  px = 0.0,
double  py = 0.0,
double  pz = 0.0,
double  qx = 0.0,
double  qy = 0.0,
double  qz = 0.0,
double  qw = 1.0 
)

Definition at line 38 of file conversions.cpp.

Variable Documentation

◆ expx

Scalar Eigen::expx = exp(x.value())

Definition at line 702 of file autodiff_scalar.h.

◆ y

const AutoDiffScalar< DerType > & Eigen::y


exotica_core
Author(s): Yiming Yang, Michael Camilleri
autogenerated on Mon Feb 28 2022 22:24:13