Namespaces | |
internal | |
Typedefs | |
template<typename T > | |
using | MatrixType = Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > |
typedef Eigen::Ref< Eigen::MatrixXd > | MatrixXdRef |
typedef const Eigen::Ref< const Eigen::MatrixXd > & | MatrixXdRefConst |
typedef Eigen::Ref< Eigen::VectorXd > | VectorXdRef |
typedef const Eigen::Ref< const Eigen::VectorXd > & | VectorXdRefConst |
Convenience wrapper for storing references to sub-matrices/vectors. More... | |
Enumerations | |
enum | NumericalDiffMode { Forward, Central } |
Functions | |
template<typename DerTypeA , typename DerTypeB > | |
const AutoDiffScalar< Matrix< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar, Dynamic, 1 > > | atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b) |
template<typename DerTypeA , typename DerTypeB > | |
const AutoDiffScalar< SparseVector< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar > > | atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b) |
template<typename DerType > | |
const AutoDiffScalar< DerType > & | conj (const AutoDiffScalar< DerType > &x) |
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (abs, using std::abs;return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() *(x.value()< 0 ? -1 :1));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2 | |
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sqrt, using std::sqrt;Scalar sqrtx=sqrt(x.value());return Eigen::MakeAutoDiffScalar(sqrtx, x.derivatives() *(Scalar(0.5)/sqrtx));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos | |
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sin, using std::sin;using std::cos;return Eigen::MakeAutoDiffScalar(sin(x.value()), x.derivatives() *cos(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp | |
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (log, using std::log;return Eigen::MakeAutoDiffScalar(log(x.value()), x.derivatives() *(Scalar(1)/x.value()));) template< typename DerType > inline const Eigen | |
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (tan, using std::tan;using std::cos;return Eigen::MakeAutoDiffScalar(tan(x.value()), x.derivatives() *(Scalar(1)/numext::abs2(cos(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin | |
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (acos, using std::sqrt;using std::acos;return Eigen::MakeAutoDiffScalar(acos(x.value()), x.derivatives() *(Scalar(-1)/sqrt(1 - numext::abs2(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh | |
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sinh, using std::sinh;using std::cosh;return Eigen::MakeAutoDiffScalar(sinh(x.value()), x.derivatives() *cosh(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh | |
void | fromMsg (const geometry_msgs::Pose &msg, Eigen::Affine3d &out) |
void | fromMsg (const geometry_msgs::Quaternion &msg, Eigen::Quaterniond &out) |
void | fromMsg (const geometry_msgs::Twist &msg, Eigen::Matrix< double, 6, 1 > &out) |
void | fromMsg (const geometry_msgs::Point &msg, Eigen::Vector3d &out) |
void | fromMsg (const geometry_msgs::Pose &msg, Eigen::Isometry3d &out) |
Eigen::VectorXd | IdentityTransform () |
template<typename DerType > | |
DerType::Scalar | imag (const AutoDiffScalar< DerType > &) |
template<typename NewDerType > | |
AutoDiffScalar< NewDerType > | MakeAutoDiffScalar (const typename NewDerType::Scalar &value, const NewDerType &der) |
template<typename Scalar , typename... Dims> | |
Eigen::Tensor< Scalar, sizeof...(Dims)> | MatrixToTensor (const MatrixType< Scalar > &matrix, Dims... dims) |
template<typename DerType > | |
const AutoDiffScalar< DerType > & | real (const AutoDiffScalar< DerType > &x) |
return (x<=y ? ADS(x) :ADS(y)) | |
return (x >=y ? ADS(x) :ADS(y)) | |
return (x< y ? ADS(x) :ADS(y)) | |
return (x > y ? ADS(x) :ADS(y)) | |
template<typename Scalar , int rank, typename sizeType > | |
MatrixType< Scalar > | TensorToMatrix (const Eigen::Tensor< Scalar, rank > &tensor, const sizeType rows, const sizeType cols) |
geometry_msgs::Quaternion | toMsg (const Eigen::Quaterniond &in) |
geometry_msgs::Pose | toMsg (const Eigen::Affine3d &in) |
geometry_msgs::Twist | toMsg (const Eigen::Matrix< double, 6, 1 > &in) |
geometry_msgs::Pose | toMsg (const Eigen::Isometry3d &in) |
geometry_msgs::Point | toMsg (const Eigen::Vector3d &in) |
Eigen::VectorXd | VectorTransform (double px=0.0, double py=0.0, double pz=0.0, double qx=0.0, double qy=0.0, double qz=0.0, double qw=1.0) |
Variables | |
Scalar | expx = exp(x.value()) |
const T & | y |
using Eigen::MatrixType = typedef Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> |
Definition at line 61 of file conversions.h.
typedef Eigen::Ref<Eigen::MatrixXd> Eigen::MatrixXdRef |
Definition at line 55 of file conversions.h.
typedef const Eigen::Ref<const Eigen::MatrixXd>& Eigen::MatrixXdRefConst |
Definition at line 53 of file conversions.h.
typedef Eigen::Ref<Eigen::VectorXd> Eigen::VectorXdRef |
Definition at line 54 of file conversions.h.
typedef const Eigen::Ref<const Eigen::VectorXd>& Eigen::VectorXdRefConst |
Convenience wrapper for storing references to sub-matrices/vectors.
Definition at line 52 of file conversions.h.
Enumerator | |
---|---|
Forward | |
Central |
Definition at line 35 of file finitediff_common.h.
|
inline |
Definition at line 721 of file autodiff_scalar.h.
|
inline |
Definition at line 739 of file autodiff_scalar.h.
|
inline |
Definition at line 628 of file autodiff_scalar.h.
Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY | ( | abs | , |
using std::abs;return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() *(x.value()< 0 ? -1 :1)); | |||
) |
Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY | ( | sqrt | , |
using std::sqrt;Scalar | sqrtx = sqrt(x.value()); return Eigen::MakeAutoDiffScalar(sqrtx, x.derivatives() * (Scalar(0.5) / sqrtx)); |
||
) |
Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY | ( | sin | , |
using std::sin;using std::cos;return Eigen::MakeAutoDiffScalar(sin(x.value()), x.derivatives() *cos(x.value())); | |||
) |
Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY | ( | log | , |
using std::log;return Eigen::MakeAutoDiffScalar(log(x.value()), x.derivatives() *(Scalar(1)/x.value())); | |||
) | const |
Definition at line 705 of file autodiff_scalar.h.
Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY | ( | tan | , |
using std::tan;using std::cos;return Eigen::MakeAutoDiffScalar(tan(x.value()), x.derivatives() *(Scalar(1)/numext::abs2(cos(x.value())))); | |||
) |
Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY | ( | acos | , |
using std::sqrt;using std::acos;return Eigen::MakeAutoDiffScalar(acos(x.value()), x.derivatives() *(Scalar(-1)/sqrt(1 - numext::abs2(x.value())))); | |||
) |
Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY | ( | sinh | , |
using std::sinh;using std::cosh;return Eigen::MakeAutoDiffScalar(sinh(x.value()), x.derivatives() *cosh(x.value())); | |||
) |
Eigen::VectorXd Eigen::IdentityTransform | ( | ) |
Definition at line 44 of file conversions.cpp.
|
inline |
Definition at line 638 of file autodiff_scalar.h.
|
inline |
Definition at line 51 of file autodiff_scalar.h.
|
inline |
Definition at line 69 of file conversions.h.
|
inline |
Definition at line 633 of file autodiff_scalar.h.
Eigen::return | ( | ) |
|
inline |
Definition at line 63 of file conversions.h.
Eigen::VectorXd Eigen::VectorTransform | ( | double | px = 0.0 , |
double | py = 0.0 , |
||
double | pz = 0.0 , |
||
double | qx = 0.0 , |
||
double | qy = 0.0 , |
||
double | qz = 0.0 , |
||
double | qw = 1.0 |
||
) |
Definition at line 38 of file conversions.cpp.
Scalar Eigen::expx = exp(x.value()) |
Definition at line 702 of file autodiff_scalar.h.
const AutoDiffScalar< DerType > & Eigen::y |
Definition at line 644 of file autodiff_scalar.h.