10 #ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H 11 #define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H 26 template<
typename MatrixType,
typename Rhs,
typename Dest,
typename Preconditioner>
29 const Preconditioner& precond,
Index& iters,
38 RealScalar tol = tol_error;
39 Index maxIters = iters;
43 VectorType residual = rhs - mat *
x;
44 VectorType normal_residual = mat.adjoint() * residual;
46 RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm();
54 RealScalar threshold = tol*tol*rhsNorm2;
55 RealScalar residualNorm2 = normal_residual.squaredNorm();
56 if (residualNorm2 < threshold)
59 tol_error =
sqrt(residualNorm2 / rhsNorm2);
64 p = precond.solve(normal_residual);
66 VectorType z(
n), tmp(m);
67 RealScalar absNew =
numext::real(normal_residual.dot(p));
71 tmp.noalias() = mat * p;
73 Scalar
alpha = absNew / tmp.squaredNorm();
75 residual -= alpha * tmp;
76 normal_residual = mat.adjoint() * residual;
78 residualNorm2 = normal_residual.squaredNorm();
79 if(residualNorm2 < threshold)
82 z = precond.solve(normal_residual);
84 RealScalar absOld = absNew;
86 RealScalar beta = absNew / absOld;
90 tol_error =
sqrt(residualNorm2 / rhsNorm2);
96 template<
typename _MatrixType,
102 template<
typename _MatrixType,
typename _Preconditioner>
148 template<
typename _MatrixType,
typename _Preconditioner>
154 using Base::m_iterations;
156 using Base::m_isInitialized;
178 template<
typename MatrixDerived>
184 template<
typename Rhs,
typename Dest>
187 m_iterations = Base::maxIterations();
188 m_error = Base::m_tolerance;
190 for(
Index j=0; j<b.cols(); ++j)
192 m_iterations = Base::maxIterations();
193 m_error = Base::m_tolerance;
199 m_isInitialized =
true;
204 using Base::_solve_impl;
205 template<
typename Rhs,
typename Dest>
209 _solve_with_guess_impl(b.derived(),
x);
216 #endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const
_Preconditioner Preconditioner
void _solve_with_guess_impl(const Rhs &b, Dest &x) const
IterativeSolverBase< LeastSquaresConjugateGradient > Base
Block< Derived, internal::traits< Derived >::RowsAtCompileTime, 1, !IsRowMajor > ColXpr
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
A conjugate gradient solver for sparse (or dense) least-square problems.
~LeastSquaresConjugateGradient()
_Preconditioner Preconditioner
Jacobi preconditioner for LeastSquaresConjugateGradient.
#define EIGEN_DONT_INLINE
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
MatrixType A(a, *n, *n, *lda)
NumTraits< Scalar >::Real RealScalar
Map< Matrix< Scalar, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > MatrixType
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
MatrixType::RealScalar RealScalar
MatrixType::Scalar Scalar
EIGEN_DONT_INLINE void least_square_conjugate_gradient(const MatrixType &mat, const Rhs &rhs, Dest &x, const Preconditioner &precond, Index &iters, typename Dest::RealScalar &tol_error)
void _solve_impl(const MatrixBase< Rhs > &b, Dest &x) const
LeastSquaresConjugateGradient()
LeastSquaresConjugateGradient(const EigenBase< MatrixDerived > &A)
Base class for linear iterative solvers.
Base class for all dense matrices, vectors, and expressions.