58 else if(*incx<0 && *incy<0) *res = (
make_vector(x,*n,-*incx).reverse().dot(
make_vector(y,*n,-*incy).reverse()));
78 else if(*incx<0 && *incy>0) *res = (
make_vector(x,*n,-*incx).reverse().cwiseProduct(
make_vector(y,*n,*incy))).sum();
79 else if(*incx>0 && *incy<0) *res = (
make_vector(x,*n,*incx).cwiseProduct(
make_vector(y,*n,-*incy).reverse())).sum();
80 else if(*incx<0 && *incy<0) *res = (
make_vector(x,*n,-*incx).reverse().cwiseProduct(
make_vector(y,*n,-*incy).reverse())).sum();
#define EIGEN_EMPTY_STRUCT_CTOR(X)
StridedVectorType vy(make_vector(y, *n, std::abs(*incy)))
Reverse< StridedVectorType > rvy(vy)
std::complex< RealScalar > Complex
A matrix or vector expression mapping an existing array of data.
int RealScalar int RealScalar int RealScalar * pc
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX, SCALAR_SUFFIX), asum_)(int *n
RealScalar RealScalar int * incx
Rotation given by a cosine-sine pair.
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
int EIGEN_BLAS_FUNC() dotuw(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres)
int RealScalar int RealScalar int RealScalar RealScalar * ps
#define REAL_SCALAR_SUFFIX
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
NumTraits< Scalar >::Real RealScalar
int RealScalar int RealScalar * py
StridedVectorType vx(make_vector(x, *n, std::abs(*incx)))
RealScalar RealScalar * px
int EIGEN_BLAS_FUNC() dotcw(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres)
Reverse< StridedVectorType > rvx(vx)
if incx return make_vector(x, *n).unaryExpr< scalar_norm1_op >().sum()
#define EIGEN_BLAS_FUNC(X)
void apply_rotation_in_the_plane(DenseBase< VectorX > &xpr_x, DenseBase< VectorY > &xpr_y, const JacobiRotation< OtherScalar > &j)
Expression of the reverse of a vector or matrix.
int RealScalar int RealScalar int * incy