ConjugateGradient.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CONJUGATE_GRADIENT_H
11 #define EIGEN_CONJUGATE_GRADIENT_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
26 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
28 void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
29  const Preconditioner& precond, Index& iters,
30  typename Dest::RealScalar& tol_error)
31 {
32  using std::sqrt;
33  using std::abs;
34  typedef typename Dest::RealScalar RealScalar;
35  typedef typename Dest::Scalar Scalar;
36  typedef Matrix<Scalar,Dynamic,1> VectorType;
37 
38  RealScalar tol = tol_error;
39  Index maxIters = iters;
40 
41  Index n = mat.cols();
42 
43  VectorType residual = rhs - mat * x; //initial residual
44 
45  RealScalar rhsNorm2 = rhs.squaredNorm();
46  if(rhsNorm2 == 0)
47  {
48  x.setZero();
49  iters = 0;
50  tol_error = 0;
51  return;
52  }
53  const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
54  RealScalar threshold = numext::maxi(tol*tol*rhsNorm2,considerAsZero);
55  RealScalar residualNorm2 = residual.squaredNorm();
56  if (residualNorm2 < threshold)
57  {
58  iters = 0;
59  tol_error = sqrt(residualNorm2 / rhsNorm2);
60  return;
61  }
62 
63  VectorType p(n);
64  p = precond.solve(residual); // initial search direction
65 
66  VectorType z(n), tmp(n);
67  RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
68  Index i = 0;
69  while(i < maxIters)
70  {
71  tmp.noalias() = mat * p; // the bottleneck of the algorithm
72 
73  Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
74  x += alpha * p; // update solution
75  residual -= alpha * tmp; // update residual
76 
77  residualNorm2 = residual.squaredNorm();
78  if(residualNorm2 < threshold)
79  break;
80 
81  z = precond.solve(residual); // approximately solve for "A z = residual"
82 
83  RealScalar absOld = absNew;
84  absNew = numext::real(residual.dot(z)); // update the absolute value of r
85  RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
86  p = z + beta * p; // update search direction
87  i++;
88  }
89  tol_error = sqrt(residualNorm2 / rhsNorm2);
90  iters = i;
91 }
92 
93 }
94 
95 template< typename _MatrixType, int _UpLo=Lower,
96  typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
98 
99 namespace internal {
100 
101 template< typename _MatrixType, int _UpLo, typename _Preconditioner>
102 struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
103 {
104  typedef _MatrixType MatrixType;
105  typedef _Preconditioner Preconditioner;
106 };
107 
108 }
109 
157 template< typename _MatrixType, int _UpLo, typename _Preconditioner>
158 class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
159 {
161  using Base::matrix;
162  using Base::m_error;
163  using Base::m_iterations;
164  using Base::m_info;
165  using Base::m_isInitialized;
166 public:
167  typedef _MatrixType MatrixType;
168  typedef typename MatrixType::Scalar Scalar;
170  typedef _Preconditioner Preconditioner;
171 
172  enum {
173  UpLo = _UpLo
174  };
175 
176 public:
177 
179  ConjugateGradient() : Base() {}
180 
191  template<typename MatrixDerived>
192  explicit ConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
193 
195 
197  template<typename Rhs,typename Dest>
198  void _solve_with_guess_impl(const Rhs& b, Dest& x) const
199  {
200  typedef typename Base::MatrixWrapper MatrixWrapper;
201  typedef typename Base::ActualMatrixType ActualMatrixType;
202  enum {
203  TransposeInput = (!MatrixWrapper::MatrixFree)
204  && (UpLo==(Lower|Upper))
205  && (!MatrixType::IsRowMajor)
207  };
208  typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
209  EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
210  typedef typename internal::conditional<UpLo==(Lower|Upper),
211  RowMajorWrapper,
212  typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
213  >::type SelfAdjointWrapper;
214  m_iterations = Base::maxIterations();
215  m_error = Base::m_tolerance;
216 
217  for(Index j=0; j<b.cols(); ++j)
218  {
219  m_iterations = Base::maxIterations();
220  m_error = Base::m_tolerance;
221 
222  typename Dest::ColXpr xj(x,j);
223  RowMajorWrapper row_mat(matrix());
224  internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
225  }
226 
227  m_isInitialized = true;
228  m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
229  }
230 
232  using Base::_solve_impl;
233  template<typename Rhs,typename Dest>
234  void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
235  {
236  x.setZero();
237  _solve_with_guess_impl(b.derived(),x);
238  }
239 
240 protected:
241 
242 };
243 
244 } // end namespace Eigen
245 
246 #endif // EIGEN_CONJUGATE_GRADIENT_H
A preconditioner based on the digonal entries.
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
Definition: common.h:102
Scalar * x
float real
Definition: datatypes.h:10
void _solve_impl(const MatrixBase< Rhs > &b, Dest &x) const
#define min(a, b)
Definition: datatypes.h:19
Definition: common.h:73
Block< Derived, internal::traits< Derived >::RowsAtCompileTime, 1, !IsRowMajor > ColXpr
Definition: BlockMethods.h:14
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
A conjugate gradient solver for sparse (or dense) self-adjoint problems.
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:150
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:124
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
#define EIGEN_IMPLIES(a, b)
Definition: Macros.h:902
#define EIGEN_DONT_INLINE
Definition: Macros.h:517
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
MatrixType A(a, *n, *n, *lda)
void _solve_with_guess_impl(const Rhs &b, Dest &x) const
NumTraits< Scalar >::Real RealScalar
Definition: common.h:85
Map< Matrix< Scalar, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > MatrixType
Definition: common.h:95
MatrixWrapper::ActualMatrixType ActualMatrixType
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
RealScalar alpha
SCALAR Scalar
Definition: common.h:84
Scalar * b
Definition: cholesky.cpp:56
EIGEN_DONT_INLINE void conjugate_gradient(const MatrixType &mat, const Rhs &rhs, Dest &x, const Preconditioner &precond, Index &iters, typename Dest::RealScalar &tol_error)
MatrixType::RealScalar RealScalar
MatrixType::Scalar Scalar
IterativeSolverBase< ConjugateGradient > Base
ConjugateGradient(const EigenBase< MatrixDerived > &A)
PlainMatrixType mat * n
Definition: eigenvalues.cpp:41
Base class for linear iterative solvers.
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
else mat
Definition: eigenvalues.cpp:43
_Preconditioner Preconditioner


control_box_rst
Author(s): Christoph Rösmann
autogenerated on Mon Feb 28 2022 22:06:47