12 #ifndef EIGEN_COMPLEX_SCHUR_H    13 #define EIGEN_COMPLEX_SCHUR_H    56       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    57       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    58       Options = MatrixType::Options,
    59       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    60       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    64     typedef typename MatrixType::Scalar 
Scalar;
    98         m_isInitialized(false),
    99         m_matUisUptodate(false),
   112     template<
typename InputType>
   114       : m_matT(matrix.rows(),matrix.cols()),
   115         m_matU(matrix.rows(),matrix.cols()),
   116         m_hess(matrix.rows()),
   117         m_isInitialized(false),
   118         m_matUisUptodate(false),
   121       compute(matrix.
derived(), computeU);
   140       eigen_assert(m_isInitialized && 
"ComplexSchur is not initialized.");
   141       eigen_assert(m_matUisUptodate && 
"The matrix U has not been computed during the ComplexSchur decomposition.");
   164       eigen_assert(m_isInitialized && 
"ComplexSchur is not initialized.");
   190     template<
typename InputType>
   210     template<
typename HessMatrixType, 
typename OrthMatrixType>
   211     ComplexSchur& computeFromHessenberg(
const HessMatrixType& matrixH, 
const OrthMatrixType& matrixQ,  
bool computeU=
true);
   219       eigen_assert(m_isInitialized && 
"ComplexSchur is not initialized.");
   230       m_maxIters = maxIters;
   245     static const int m_maxIterationsPerRow = 30;
   256     bool subdiagonalEntryIsNeglegible(Index i);
   257     ComplexScalar computeShift(Index iu, Index iter);
   258     void reduceToTriangularForm(
bool computeU);
   266 inline bool 
ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
   268   RealScalar 
d = numext::norm1(m_matT.
coeff(i,i)) + numext::norm1(m_matT.
coeff(i+1,i+1));
   269   RealScalar sd = numext::norm1(m_matT.
coeff(i+1,i));
   272     m_matT.
coeffRef(i+1,i) = ComplexScalar(0);
   280 template<
typename MatrixType>
   284   if (iter == 10 || iter == 20) 
   293   RealScalar normt = t.cwiseAbs().sum();
   296   ComplexScalar b = t.
coeff(0,1) * t.
coeff(1,0);
   297   ComplexScalar c = t.
coeff(0,0) - t.
coeff(1,1);
   298   ComplexScalar disc = 
sqrt(c*c + RealScalar(4)*b);
   299   ComplexScalar det = t.
coeff(0,0) * t.
coeff(1,1) - b;
   300   ComplexScalar trace = t.
coeff(0,0) + t.
coeff(1,1);
   301   ComplexScalar eival1 = (trace + disc) / RealScalar(2);
   302   ComplexScalar eival2 = (trace - disc) / RealScalar(2);
   304   if(numext::norm1(eival1) > numext::norm1(eival2))
   305     eival2 = det / eival1;
   307     eival1 = det / eival2;
   310   if(numext::norm1(eival1-t.
coeff(1,1)) < numext::norm1(eival2-t.
coeff(1,1)))
   311     return normt * eival1;
   313     return normt * eival2;
   317 template<
typename MatrixType>
   318 template<
typename InputType>
   321   m_matUisUptodate = 
false;
   324   if(matrix.
cols() == 1)
   326     m_matT = matrix.
derived().template cast<ComplexScalar>();
   327     if(computeU)  m_matU = ComplexMatrixType::Identity(1,1);
   329     m_isInitialized = 
true;
   330     m_matUisUptodate = computeU;
   335   computeFromHessenberg(m_matT, m_matU, computeU);
   339 template<
typename MatrixType>
   340 template<
typename HessMatrixType, 
typename OrthMatrixType>
   346   reduceToTriangularForm(computeU);
   352 template<
typename MatrixType, 
bool IsComplex>
   353 struct complex_schur_reduce_to_hessenberg
   364 template<
typename MatrixType>
   378       _this.
m_matU = Q.template cast<ComplexScalar>();
   386 template<
typename MatrixType>
   389   Index maxIters = m_maxIters;
   391     maxIters = m_maxIterationsPerRow * m_matT.
rows();
   397   Index iu = m_matT.
cols() - 1;
   407       if(!subdiagonalEntryIsNeglegible(iu-1)) 
break;
   418     if(totalIter > maxIters) 
break;
   422     while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
   431     ComplexScalar shift = computeShift(iu, iter);
   434     m_matT.rightCols(m_matT.
cols()-il).applyOnTheLeft(il, il+1, rot.
adjoint());
   435     m_matT.topRows((
std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
   436     if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
   438     for(Index i=il+1 ; i<iu ; i++)
   441       m_matT.
coeffRef(i+1,i-1) = ComplexScalar(0);
   442       m_matT.rightCols(m_matT.
cols()-i).applyOnTheLeft(i, i+1, rot.
adjoint());
   443       m_matT.topRows((
std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
   444       if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
   448   if(totalIter <= maxIters)
   453   m_isInitialized = 
true;
   454   m_matUisUptodate = computeU;
   459 #endif // EIGEN_COMPLEX_SCHUR_H 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const
NumTraits< Scalar >::Real RealScalar
ComplexSchur(const EigenBase< InputType > &matrix, bool computeU=true)
Constructor; computes Schur decomposition of given matrix. 
EIGEN_DEVICE_FUNC RealReturnType real() const
EIGEN_DEVICE_FUNC Index rows() const
ComplexSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed. 
void makeGivens(const Scalar &p, const Scalar &q, Scalar *z=0)
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
Rotation given by a cosine-sine pair. 
HessenbergDecomposition< MatrixType > m_hess
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
ComplexSchur & computeFromHessenberg(const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU=true)
Compute Schur decomposition from a given Hessenberg matrix. 
std::complex< RealScalar > ComplexScalar
Complex scalar type for _MatrixType. 
ComplexSchur & compute(const EigenBase< InputType > &matrix, bool computeU=true)
Computes Schur decomposition of given matrix. 
ComputationInfo info() const
Reports whether previous computation was successful. 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > ComplexMatrixType
Type for the matrices in the Schur decomposition. 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
MatrixType::Scalar Scalar
Scalar type for matrices of type _MatrixType. 
HessenbergDecomposition & compute(const EigenBase< InputType > &matrix)
Computes Hessenberg decomposition of given matrix. 
static void run(ComplexSchur< MatrixType > &_this, const MatrixType &matrix, bool computeU)
MatrixHReturnType matrixH() const
Constructs the Hessenberg matrix H in the decomposition. 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar & coeff(Index rowId, Index colId) const
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API. 
Index getMaxIterations()
Returns the maximum number of iterations. 
ComplexSchur(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor. 
ComplexScalar computeShift(Index iu, Index iter)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const
static void run(ComplexSchur< MatrixType > &_this, const MatrixType &matrix, bool computeU)
void reduceToTriangularForm(bool computeU)
const ComplexMatrixType & matrixU() const
Returns the unitary matrix in the Schur decomposition. 
EIGEN_DEVICE_FUNC Index cols() const
HouseholderSequenceType matrixQ() const
Reconstructs the orthogonal matrix Q in the decomposition. 
Performs a complex Schur decomposition of a real or complex square matrix. 
EIGEN_DEVICE_FUNC Derived & derived()
const ComplexMatrixType & matrixT() const
Returns the triangular matrix in the Schur decomposition. 
JacobiRotation adjoint() const