11 #ifndef EIGEN_HESSENBERGDECOMPOSITION_H    12 #define EIGEN_HESSENBERGDECOMPOSITION_H    19 template<
typename MatrixType>
    65       Size = MatrixType::RowsAtCompileTime,
    67       Options = MatrixType::Options,
    68       MaxSize = MatrixType::MaxRowsAtCompileTime,
    73     typedef typename MatrixType::Scalar 
Scalar;
   101       : m_matrix(size,size),
   103         m_isInitialized(false)
   106         m_hCoeffs.resize(size-1);
   118     template<
typename InputType>
   120       : m_matrix(matrix.derived()),
   121         m_temp(matrix.rows()),
   122         m_isInitialized(false)
   126         m_isInitialized = 
true;
   129       m_hCoeffs.resize(matrix.
rows()-1,1);
   130       _compute(m_matrix, m_hCoeffs, m_temp);
   131       m_isInitialized = 
true;
   151     template<
typename InputType>
   157         m_isInitialized = 
true;
   160       m_hCoeffs.resize(matrix.
rows()-1,1);
   161       _compute(m_matrix, m_hCoeffs, m_temp);
   162       m_isInitialized = 
true;
   181       eigen_assert(m_isInitialized && 
"HessenbergDecomposition is not initialized.");
   216       eigen_assert(m_isInitialized && 
"HessenbergDecomposition is not initialized.");
   236       eigen_assert(m_isInitialized && 
"HessenbergDecomposition is not initialized.");
   237       return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
   238              .setLength(m_matrix.rows() - 1)
   264       eigen_assert(m_isInitialized && 
"HessenbergDecomposition is not initialized.");
   265       return MatrixHReturnType(*
this);
   272     static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp);
   293 template<
typename MatrixType>
   297   Index n = matA.rows();
   299   for (
Index i = 0; i<n-1; ++i)
   302     Index remainingSize = n-i-1;
   305     matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
   306     matA.col(i).coeffRef(i+1) = beta;
   313     matA.bottomRightCorner(remainingSize, remainingSize)
   314         .applyHouseholderOnTheLeft(matA.col(i).tail(remainingSize-1), h, &temp.
coeffRef(0));
   317     matA.rightCols(remainingSize)
   318         .applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1).conjugate(), numext::conj(h), &temp.
coeffRef(0));
   339 template<
typename MatrixType> 
struct HessenbergDecompositionMatrixHReturnType
   340 : 
public ReturnByValue<HessenbergDecompositionMatrixHReturnType<MatrixType> >
   354     template <
typename ResultType>
   355     inline void evalTo(ResultType& result)
 const   357       result = m_hess.packedMatrix();
   358       Index n = result.rows();
   360         result.bottomLeftCorner(n-2, n-2).template triangularView<Lower>().setZero();
   363     Index rows()
 const { 
return m_hess.packedMatrix().rows(); }
   364     Index cols()
 const { 
return m_hess.packedMatrix().cols(); }
   374 #endif // EIGEN_HESSENBERGDECOMPOSITION_H 
const MatrixType & packedMatrix() const
Returns the internal representation of the decomposition. 
EIGEN_DEVICE_FUNC Index rows() const
static void _compute(MatrixType &matA, CoeffVectorType &hCoeffs, VectorType &temp)
CoeffVectorType m_hCoeffs
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
internal::HessenbergDecompositionMatrixHReturnType< MatrixType > MatrixHReturnType
_MatrixType MatrixType
Synonym for the template parameter _MatrixType. 
MatrixType::Scalar Scalar
Scalar type for matrices of type MatrixType. 
void evalTo(ResultType &result) const
Hessenberg matrix in decomposition. 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
Sequence of Householder reflections acting on subspaces with decreasing size. 
Matrix< Scalar, 1, Size, Options|RowMajor, 1, MaxSize > VectorType
HessenbergDecomposition & compute(const EigenBase< InputType > &matrix)
Computes Hessenberg decomposition of given matrix. 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
NumTraits< Scalar >::Real RealScalar
MatrixHReturnType matrixH() const
Constructs the Hessenberg matrix H in the decomposition. 
HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition< MatrixType > &hess)
Constructor. 
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API. 
const HessenbergDecomposition< MatrixType > & m_hess
HessenbergDecomposition(const EigenBase< InputType > &matrix)
Constructor; computes Hessenberg decomposition of given matrix. 
Expression type for return value of HessenbergDecomposition::matrixH() 
HessenbergDecomposition(Index size=Size==Dynamic ? 2 :Size)
Default constructor; the decomposition will be computed later. 
Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation. 
HouseholderSequenceType matrixQ() const
Reconstructs the orthogonal matrix Q in the decomposition. 
const CoeffVectorType & householderCoefficients() const
Returns the Householder coefficients. 
HouseholderSequence< MatrixType, typename internal::remove_all< typename CoeffVectorType::ConjugateReturnType >::type > HouseholderSequenceType
Return type of matrixQ() 
Matrix< Scalar, SizeMinusOne, 1, Options &~RowMajor, MaxSizeMinusOne, 1 > CoeffVectorType
Type for vector of Householder coefficients. 
EIGEN_DEVICE_FUNC Derived & derived()