22 #include "../wrappers/rng/rng.h" 29 int num_conditional_arguments)
30 :
ConditionalPdf<ColumnVector,ColumnVector>(dim, num_conditional_arguments)
33 , _Low_triangle(dim,dim)
89 cerr <<
"Box-Muller not implemented yet!" << endl;
110 cerr <<
"Conditional Gaussian: Sampling method " << method
111 <<
"not implemented yet!" << endl;
virtual ConditionalGaussian * Clone() const
Clone function.
ColumnVector _SampleValue
double rnorm(const double &mu, const double &sigma)
virtual bool SampleFrom(Sample< MatrixWrapper::ColumnVector > &sample, int method=DEFAULT, void *args=NULL) const
void ValueSet(const T &value)
Set the value of the Sample.
Abstract Class representing conditional Pdfs P(x | ...)
virtual Probability ProbabilityGet(const MatrixWrapper::ColumnVector &input) const
Get the probability of a certain argument.
unsigned int DimensionGet() const
Get the dimension of the argument.
virtual MatrixWrapper::ColumnVector ExpectedValueGet() const
Get the expected value E[x] of the pdf.
virtual bool SampleFrom(vector< Sample< T > > &list_samples, const unsigned int num_samples, int method=DEFAULT, void *args=NULL) const
Draw multiple samples from the Pdf (overloaded)
virtual ~ConditionalGaussian()
Destructor.
ConditionalGaussian(int dim=0, int num_conditional_arguments=0)
Constructor.
Class representing a probability (a double between 0 and 1)
Abstract Class representing all Conditional gaussians.
virtual MatrixWrapper::SymmetricMatrix CovarianceGet() const
Get the Covariance Matrix E[(x - E[x])^2] of the Analytic pdf.