simplex_downhill.h
Go to the documentation of this file.
1 /***********************************************************************
2  * Software License Agreement (BSD License)
3  *
4  * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
5  * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
6  *
7  * THE BSD LICENSE
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  * notice, this list of conditions and the following disclaimer in the
17  * documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *************************************************************************/
30 
31 #ifndef RTABMAP_FLANN_SIMPLEX_DOWNHILL_H_
32 #define RTABMAP_FLANN_SIMPLEX_DOWNHILL_H_
33 
34 namespace rtflann
35 {
36 
40 template <typename T>
41 void addValue(int pos, float val, float* vals, T* point, T* points, int n)
42 {
43  vals[pos] = val;
44  for (int i=0; i<n; ++i) {
45  points[pos*n+i] = point[i];
46  }
47 
48  // bubble down
49  int j=pos;
50  while (j>0 && vals[j]<vals[j-1]) {
51  swap(vals[j],vals[j-1]);
52  for (int i=0; i<n; ++i) {
53  swap(points[j*n+i],points[(j-1)*n+i]);
54  }
55  --j;
56  }
57 }
58 
59 
68 template <typename T, typename F>
69 float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
70 {
71  const int MAX_ITERATIONS = 10;
72 
73  assert(n>0);
74 
75  T* p_o = new T[n];
76  T* p_r = new T[n];
77  T* p_e = new T[n];
78 
79  int alpha = 1;
80 
81  int iterations = 0;
82 
83  bool ownVals = false;
84  if (vals == NULL) {
85  ownVals = true;
86  vals = new float[n+1];
87  for (int i=0; i<n+1; ++i) {
88  float val = func(points+i*n);
89  addValue(i, val, vals, points+i*n, points, n);
90  }
91  }
92  int nn = n*n;
93 
94  while (true) {
95 
96  if (iterations++ > MAX_ITERATIONS) break;
97 
98  // compute average of simplex points (except the highest point)
99  for (int j=0; j<n; ++j) {
100  p_o[j] = 0;
101  for (int i=0; i<n; ++i) {
102  p_o[i] += points[j*n+i];
103  }
104  }
105  for (int i=0; i<n; ++i) {
106  p_o[i] /= n;
107  }
108 
109  bool converged = true;
110  for (int i=0; i<n; ++i) {
111  if (p_o[i] != points[nn+i]) {
112  converged = false;
113  }
114  }
115  if (converged) break;
116 
117  // trying a reflection
118  for (int i=0; i<n; ++i) {
119  p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]);
120  }
121  float val_r = func(p_r);
122 
123  if ((val_r>=vals[0])&&(val_r<vals[n])) {
124  // reflection between second highest and lowest
125  // add it to the simplex
126  Logger::info("Choosing reflection\n");
127  addValue(n, val_r,vals, p_r, points, n);
128  continue;
129  }
130 
131  if (val_r<vals[0]) {
132  // value is smaller than smalest in simplex
133 
134  // expand some more to see if it drops further
135  for (int i=0; i<n; ++i) {
136  p_e[i] = 2*p_r[i]-p_o[i];
137  }
138  float val_e = func(p_e);
139 
140  if (val_e<val_r) {
141  Logger::info("Choosing reflection and expansion\n");
142  addValue(n, val_e,vals,p_e,points,n);
143  }
144  else {
145  Logger::info("Choosing reflection\n");
146  addValue(n, val_r,vals,p_r,points,n);
147  }
148  continue;
149  }
150  if (val_r>=vals[n]) {
151  for (int i=0; i<n; ++i) {
152  p_e[i] = (p_o[i]+points[nn+i])/2;
153  }
154  float val_e = func(p_e);
155 
156  if (val_e<vals[n]) {
157  Logger::info("Choosing contraction\n");
158  addValue(n,val_e,vals,p_e,points,n);
159  continue;
160  }
161  }
162  {
163  Logger::info("Full contraction\n");
164  for (int j=1; j<=n; ++j) {
165  for (int i=0; i<n; ++i) {
166  points[j*n+i] = (points[j*n+i]+points[i])/2;
167  }
168  float val = func(points+j*n);
169  addValue(j,val,vals,points+j*n,points,n);
170  }
171  }
172  }
173 
174  float bestVal = vals[0];
175 
176  delete[] p_r;
177  delete[] p_o;
178  delete[] p_e;
179  if (ownVals) delete[] vals;
180 
181  return bestVal;
182 }
183 
184 }
185 
186 #endif //FLANN_SIMPLEX_DOWNHILL_H_
#define NULL
void func(GLuint LocationMVP, float Translate, glm::vec2 const &Rotate)
Definition: dummy.cpp:88
void addValue(int pos, float val, float *vals, T *point, T *points, int n)
float optimizeSimplexDownhill(T *points, int n, F func, float *vals=NULL)


rtabmap
Author(s): Mathieu Labbe
autogenerated on Wed Jun 5 2019 22:41:32