|
| PGSContactSolverTpl (const int problem_size) |
|
template<typename MatrixLike , typename VectorLike , typename ConstraintAllocator , typename VectorLikeOut > |
bool | solve (const MatrixLike &G, const Eigen::MatrixBase< VectorLike > &g, const std::vector< CoulombFrictionConeTpl< Scalar >, ConstraintAllocator > &cones, const Eigen::DenseBase< VectorLikeOut > &x, const Scalar over_relax=Scalar(1)) |
| Solve the constrained conic problem composed of problem data (G,g,cones) and starting from the initial guess. More...
|
|
| ContactSolverBaseTpl (const int problem_size) |
|
Scalar | getAbsoluteConvergenceResidual () const |
| Returns the value of the absolute residual value corresponding to the contact complementary conditions. More...
|
|
Scalar | getAbsolutePrecision () const |
| Get the absolute precision requested. More...
|
|
int | getIterationCount () const |
| Get the number of iterations achieved by the solver. More...
|
|
int | getMaxIterations () const |
| Get the maximum number of iterations allowed. More...
|
|
int | getProblemSize () const |
| Returns the size of the problem. More...
|
|
Scalar | getRelativeConvergenceResidual () const |
| Returns the value of the relative residual value corresponding to the difference between two successive iterates (infinity norms). More...
|
|
Scalar | getRelativePrecision () const |
| Get the relative precision requested. More...
|
|
void | setAbsolutePrecision (const Scalar absolute_precision) |
| Set the absolute precision for the problem. More...
|
|
void | setMaxIterations (const int max_it) |
| Set the maximum number of iterations. More...
|
|
void | setRelativePrecision (const Scalar relative_precision) |
| Set the relative precision for the problem. More...
|
|
template<typename _Scalar>
struct pinocchio::PGSContactSolverTpl< _Scalar >
Projected Gauss Siedel solver.
Definition at line 16 of file pgs-solver.hpp.
template<typename _Scalar >
template<typename MatrixLike , typename VectorLike , typename ConstraintAllocator , typename VectorLikeOut >
Solve the constrained conic problem composed of problem data (G,g,cones) and starting from the initial guess.
- Parameters
-
[in] | G | Symmetric PSD matrix representing the Delassus of the contact problem. |
[in] | g | Free contact acceleration or velicity associted with the contact problem. |
[in] | cones | Vector of conic constraints. |
[in,out] | x | Initial guess and output solution of the problem |
[in] | over_relax | Over relaxation value |
- Returns
- True if the problem has converged.