76 template<
class POSE, 
class VELOCITY, 
class IMUBIAS>
 
  100   typedef typename std::shared_ptr<InertialNavFactor_GlobalVelocity> 
shared_ptr;
 
  119     std::cout << 
s << 
"(" 
  120         << keyFormatter(this->
key1()) << 
"," 
  121         << keyFormatter(this->
key2()) << 
"," 
  122         << keyFormatter(this->
key3()) << 
"," 
  123         << keyFormatter(this->
key4()) << 
"," 
  124         << keyFormatter(this->
key5()) << 
"\n";
 
  125     std::cout << 
"acc measurement: " << this->measurement_acc_.transpose() << std::endl;
 
  126     std::cout << 
"gyro measurement: " << this->measurement_gyro_.transpose() << std::endl;
 
  127     std::cout << 
"dt: " << this->dt_ << std::endl;
 
  128     std::cout << 
"gravity (in world frame): " << this->world_g_.transpose() << std::endl;
 
  129     std::cout << 
"craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
 
  130     std::cout << 
"earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
 
  131     if(this->body_P_sensor_)
 
  132       this->body_P_sensor_->print(
"  sensor pose in body frame: ");
 
  149   POSE 
predictPose(
const POSE& Pose1, 
const VELOCITY& Vel1, 
const IMUBIAS& Bias1)
 const {
 
  153     const POSE& world_P1_body = Pose1;
 
  154     const VELOCITY& world_V1_body = Vel1;
 
  159       body_omega_body = 
body_P_sensor_->rotation().matrix() * GyroCorrected;
 
  161       body_omega_body = GyroCorrected;
 
  165     Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
 
  170     body_omega_body -= body_rho + body_omega_earth;
 
  173     return POSE(Pose1.rotation() * 
POSE::Rotation::Expmap(body_omega_body*
dt_), Pose1.translation() + 
typename POSE::Translation(world_V1_body*
dt_));
 
  176   VELOCITY 
predictVelocity(
const POSE& Pose1, 
const VELOCITY& Vel1, 
const IMUBIAS& Bias1)
 const {
 
  180     const POSE& world_P1_body = Pose1;
 
  181     const VELOCITY& world_V1_body = Vel1;
 
  184     Vector body_a_body, body_omega_body;
 
  189       body_omega_body = body_R_sensor * GyroCorrected;
 
  191       body_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * 
body_P_sensor_->translation();
 
  193       body_a_body = AccCorrected;
 
  200     VELOCITY VelDelta(world_a_body*
dt_);
 
  203     return Vel1 + VelDelta;
 
  206   void predict(
const POSE& Pose1, 
const VELOCITY& Vel1, 
const IMUBIAS& Bias1, POSE& 
Pose2, VELOCITY& Vel2)
 const {
 
  211   POSE 
evaluatePoseError(
const POSE& Pose1, 
const VELOCITY& Vel1, 
const IMUBIAS& Bias1, 
const POSE& 
Pose2, 
const VELOCITY& Vel2)
 const {
 
  219   VELOCITY 
evaluateVelocityError(
const POSE& Pose1, 
const VELOCITY& Vel1, 
const IMUBIAS& Bias1, 
const POSE& 
Pose2, 
const VELOCITY& Vel2)
 const {
 
  224     return Vel2Pred - Vel2;
 
  235       Matrix H1_Pose = gtsam::numericalDerivative11<POSE, POSE>(
 
  237                       this, std::placeholders::_1, Vel1, Bias1, 
Pose2, Vel2),
 
  239       Matrix H1_Vel = gtsam::numericalDerivative11<VELOCITY, POSE>(
 
  241                       this, std::placeholders::_1, Vel1, Bias1, 
Pose2, Vel2),
 
  243       *H1 = 
stack(2, &H1_Pose, &H1_Vel);
 
  248       if (Vel1.size()!=3) 
throw std::runtime_error(
"Frank's hack to make this compile will not work if size != 3");
 
  249       Matrix H2_Pose = gtsam::numericalDerivative11<POSE, Vector3>(
 
  251                       this, Pose1, std::placeholders::_1, Bias1, 
Pose2, Vel2),
 
  253       Matrix H2_Vel = gtsam::numericalDerivative11<Vector3, Vector3>(
 
  255                       this, Pose1, std::placeholders::_1, Bias1, 
Pose2, Vel2),
 
  257       *H2 = 
stack(2, &H2_Pose, &H2_Vel);
 
  262       Matrix H3_Pose = gtsam::numericalDerivative11<POSE, IMUBIAS>(
 
  264                       this, Pose1, Vel1, std::placeholders::_1, 
Pose2, Vel2),
 
  266       Matrix H3_Vel = gtsam::numericalDerivative11<VELOCITY, IMUBIAS>(
 
  268                       this, Pose1, Vel1, std::placeholders::_1, 
Pose2, Vel2),
 
  270       *H3 = 
stack(2, &H3_Pose, &H3_Vel);
 
  275       Matrix H4_Pose = gtsam::numericalDerivative11<POSE, POSE>(
 
  277                       this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
 
  279       Matrix H4_Vel = gtsam::numericalDerivative11<VELOCITY, POSE>(
 
  281                       this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
 
  283       *H4 = 
stack(2, &H4_Pose, &H4_Vel);
 
  288       if (Vel2.size()!=3) 
throw std::runtime_error(
"Frank's hack to make this compile will not work if size != 3");
 
  289       Matrix H5_Pose = gtsam::numericalDerivative11<POSE, Vector3>(
 
  291                       this, Pose1, Vel1, Bias1, 
Pose2, std::placeholders::_1),
 
  293       Matrix H5_Vel = gtsam::numericalDerivative11<Vector3, Vector3>(
 
  295                       this, Pose1, Vel1, Bias1, 
Pose2, std::placeholders::_1),
 
  297       *H5 = 
stack(2, &H5_Pose, &H5_Vel);
 
  309     Matrix cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).
inverse();
 
  310     Matrix cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).
inverse();
 
  311     Matrix cov_process = ( gaussian_process->R().transpose() * gaussian_process->R() ).
inverse();
 
  313     cov_process.block(0,0, 3,3) += cov_gyro;
 
  314     cov_process.block(6,6, 3,3) += cov_acc;
 
  325         0.0,  0.0, -1.0).finished();
 
  330         0.0,  0.0, -1.0).finished();
 
  333     Vector Pos_ENU = NED_to_ENU * Pos_NED;
 
  334     Vector Vel_ENU = NED_to_ENU * Vel_NED;
 
  335     Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
 
  344     g_NED = ENU_to_NED * g_ENU;
 
  345     rho_NED = ENU_to_NED * rho_ENU;
 
  346     omega_earth_NED = ENU_to_NED * omega_earth_ENU;
 
  351     double R0 = 6.378388e6;
 
  353     double Re( 
R0*( 1-
e*(
sin( LatLonHeight_IC(0) ))*(
sin( LatLonHeight_IC(0) )) ) );
 
  356     Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
 
  357     double delta_lat(delta_Pos_ENU(1)/Re);
 
  358     double delta_lon(delta_Pos_ENU(0)/(Re*
cos(LatLonHeight_IC(0))));
 
  359     double lat_new(LatLonHeight_IC(0) + delta_lat);
 
  360     double lon_new(LatLonHeight_IC(1) + delta_lon);
 
  364         -
sin(lon_new), 
cos(lon_new), 0.0,
 
  370         -
sin(lat_new), 0.0, 
cos(lat_new));
 
  372     Rot3 UEN_to_ENU(0, 1, 0,
 
  376     Rot3 R_ECEF_to_ENU( UEN_to_ENU * 
C2 * 
C1 );
 
  379     omega_earth_ENU = R_ECEF_to_ENU.
matrix() * omega_earth_ECEF;
 
  382     double height(LatLonHeight_IC(2));
 
  383     double EQUA_RADIUS = 6378137.0;        
 
  384     double ECCENTRICITY = 0.0818191908426;  
 
  385     double e2( 
pow(ECCENTRICITY,2) );
 
  386     double den( 1-e2*
pow(
sin(lat_new),2) );
 
  387     double Rm( (EQUA_RADIUS*(1-e2))/( 
pow(den,(3/2)) ) );
 
  388     double Rp( EQUA_RADIUS/( 
sqrt(den) ) );
 
  389     double Ro( 
sqrt(Rp*Rm) );           
 
  390     double g0( 9.780318*( 1 + 5.3024
e-3 * 
pow(
sin(lat_new),2) - 5.9
e-6 * 
pow(
sin(2*lat_new),2) ) );
 
  391     double g_calc( g0/( 
pow(1 + height/Ro, 2) ) );
 
  392     g_ENU = (
Vector(3) << 0.0, 0.0, -g_calc).finished();
 
  396     double Ve( Vel_ENU(0) );
 
  397     double Vn( Vel_ENU(1) );
 
  398     double rho_E = -Vn/(Rm + height);
 
  399     double rho_N = Ve/(Rp + height);
 
  400     double rho_U = Ve*
tan(lat_new)/(Rp + height);
 
  401     rho_ENU = (
Vector(3) << rho_E, rho_N, rho_U).finished();
 
  414 #if GTSAM_ENABLE_BOOST_SERIALIZATION 
  416   friend class boost::serialization::access;
 
  417   template<
class ARCHIVE>
 
  418   void serialize(ARCHIVE & ar, 
const unsigned int ) {
 
  419     ar & boost::serialization::make_nvp(
"NonlinearFactor2",
 
  420         boost::serialization::base_object<Base>(*
this));
 
  427 template<
class POSE, 
class VELOCITY, 
class IMUBIAS>
 
  429     public Testable<InertialNavFactor_GlobalVelocity<POSE, VELOCITY, IMUBIAS> > {