87 template<
class POSE, 
class VELOCITY, 
class IMUBIAS>
 
  115   typedef typename std::shared_ptr<EquivInertialNavFactor_GlobalVel> 
shared_ptr;
 
  125       const Matrix& Jacobian_wrt_t0_Overall,
 
  126       std::optional<IMUBIAS> Bias_initial = {}, std::optional<POSE> 
body_P_sensor = {}) :
 
  127         Base(model_equivalent, Pose1, Vel1, IMUBias1, Pose2, Vel2),
 
  138     std::cout << 
s << 
"(" 
  139         << keyFormatter(this->
key1()) << 
"," 
  140         << keyFormatter(this->
key2()) << 
"," 
  141         << keyFormatter(this->
key3()) << 
"," 
  142         << keyFormatter(this->
key4()) << 
"," 
  143         << keyFormatter(this->
key5()) << 
"\n";
 
  144     std::cout << 
"delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl;
 
  145     std::cout << 
"delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl;
 
  146     std::cout << 
"delta_angles: " << this->delta_angles_ << std::endl;
 
  147     std::cout << 
"dt12: " << this->dt12_ << std::endl;
 
  148     std::cout << 
"gravity (in world frame): " << this->world_g_.transpose() << std::endl;
 
  149     std::cout << 
"craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
 
  150     std::cout << 
"earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
 
  151     if(this->body_P_sensor_)
 
  152       this->body_P_sensor_->print(
"  sensor pose in body frame: ");
 
  171   POSE 
predictPose(
const POSE& Pose1, 
const VELOCITY& Vel1, 
const IMUBIAS& Bias1)
 const {
 
  174     Vector delta_BiasAcc  = Bias1.accelerometer();
 
  175     Vector delta_BiasGyro = Bias1.gyroscope();
 
  186     Vector delta_pos_in_t0_corrected = 
delta_pos_in_t0_ + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro;
 
  194         delta_pos_in_t0_corrected, delta_angles_corrected,
 
  202     const POSE& world_P1_body = Pose1;
 
  203     const VELOCITY& world_V1_body = Vel1;
 
  206     Vector body_deltaPos_body = delta_pos_in_t0;
 
  208     Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body;
 
  209     Vector world_deltaPos_body     = world_V1_body * dt12 + 0.5*
world_g*dt12*dt12 + world_deltaPos_pls_body;
 
  222     Vector body_deltaAngles_body = delta_angles;
 
  225     Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
 
  230     body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12;
 
  232     return POSE(Pose1.rotation() * 
POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() + 
typename POSE::Translation(world_deltaPos_body));
 
  236   VELOCITY 
predictVelocity(
const POSE& Pose1, 
const VELOCITY& Vel1, 
const IMUBIAS& Bias1)
 const {
 
  239     Vector delta_BiasAcc  = Bias1.accelerometer();
 
  240     Vector delta_BiasGyro = Bias1.gyroscope();
 
  249     Vector delta_vel_in_t0_corrected = 
delta_vel_in_t0_ + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro;
 
  252         delta_vel_in_t0_corrected,
 
  257       const Vector& delta_vel_in_t0,
 
  260     const POSE& world_P1_body = Pose1;
 
  261       const VELOCITY& world_V1_body = Vel1;
 
  263       Vector body_deltaVel_body = delta_vel_in_t0;
 
  264       Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body;
 
  266     VELOCITY VelDelta( world_deltaVel_body + 
world_g * dt12 );
 
  272     return Vel1 + VelDelta;
 
  276   void predict(
const POSE& Pose1, 
const VELOCITY& Vel1, 
const IMUBIAS& Bias1, POSE& 
Pose2, VELOCITY& Vel2)
 const {
 
  281   POSE 
evaluatePoseError(
const POSE& Pose1, 
const VELOCITY& Vel1, 
const IMUBIAS& Bias1, 
const POSE& 
Pose2, 
const VELOCITY& Vel2)
 const {
 
  293   VELOCITY 
evaluateVelocityError(
const POSE& Pose1, 
const VELOCITY& Vel1, 
const IMUBIAS& Bias1, 
const POSE& 
Pose2, 
const VELOCITY& Vel2)
 const {
 
  298     return Vel2Pred-Vel2;
 
  308       Matrix H1_Pose = numericalDerivative11<POSE, POSE>(
 
  310                       this, std::placeholders::_1, Vel1, Bias1, 
Pose2, Vel2),
 
  312       Matrix H1_Vel = numericalDerivative11<VELOCITY, POSE>(
 
  314                       this, std::placeholders::_1, Vel1, Bias1, 
Pose2, Vel2),
 
  316       *H1 = 
stack(2, &H1_Pose, &H1_Vel);
 
  321       if (Vel1.size()!=3) 
throw std::runtime_error(
"Frank's hack to make this compile will not work if size != 3");
 
  322       Matrix H2_Pose = numericalDerivative11<POSE, Vector3>(
 
  324                       this, Pose1, std::placeholders::_1, Bias1, 
Pose2, Vel2),
 
  326       Matrix H2_Vel = numericalDerivative11<Vector3, Vector3>(
 
  328                       this, Pose1, std::placeholders::_1, Bias1, 
Pose2, Vel2),
 
  330       *H2 = 
stack(2, &H2_Pose, &H2_Vel);
 
  335       Matrix H3_Pose = numericalDerivative11<POSE, IMUBIAS>(
 
  337                       this, Pose1, Vel1, std::placeholders::_1, 
Pose2, Vel2),
 
  339       Matrix H3_Vel = numericalDerivative11<VELOCITY, IMUBIAS>(
 
  341                       this, Pose1, Vel1, std::placeholders::_1, 
Pose2, Vel2),
 
  343       *H3 = 
stack(2, &H3_Pose, &H3_Vel);
 
  348       Matrix H4_Pose = numericalDerivative11<POSE, POSE>(
 
  350                       this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
 
  352       Matrix H4_Vel = numericalDerivative11<VELOCITY, POSE>(
 
  354                       this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
 
  356       *H4 = 
stack(2, &H4_Pose, &H4_Vel);
 
  361       if (Vel2.size()!=3) 
throw std::runtime_error(
"Frank's hack to make this compile will not work if size != 3");
 
  362       Matrix H5_Pose = numericalDerivative11<POSE, Vector3>(
 
  364                       this, Pose1, Vel1, Bias1, 
Pose2, std::placeholders::_1),
 
  366       Matrix H5_Vel = numericalDerivative11<Vector3, Vector3>(
 
  368                       this, Pose1, Vel1, Bias1, 
Pose2, std::placeholders::_1),
 
  370       *H5 = 
stack(2, &H5_Pose, &H5_Vel);
 
  385       const std::optional<IMUBIAS>& Bias_initial = {}) {
 
  389     Vector delta_BiasAcc  = Bias1.accelerometer();
 
  390     Vector delta_BiasGyro = Bias1.gyroscope();
 
  392       delta_BiasAcc  -= Bias_initial->accelerometer();
 
  393       delta_BiasGyro -= Bias_initial->gyroscope();
 
  396     Matrix J_Pos_wrt_BiasAcc  = Jacobian_wrt_t0_Overall.block(4,9,3,3);
 
  397     Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(4,12,3,3);
 
  398     Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(0,12,3,3);
 
  401     Vector delta_pos_in_t0_corrected = delta_pos_in_t0 + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro;
 
  404     Vector delta_angles_corrected = delta_angles + J_angles_wrt_BiasGyro*delta_BiasGyro;
 
  414       const std::optional<IMUBIAS>& Bias_initial = {}) {
 
  417     Vector delta_BiasAcc  = Bias1.accelerometer();
 
  418     Vector delta_BiasGyro = Bias1.gyroscope();
 
  420       delta_BiasAcc  -= Bias_initial->accelerometer();
 
  421       delta_BiasGyro -= Bias_initial->gyroscope();
 
  424     Matrix J_Vel_wrt_BiasAcc  = Jacobian_wrt_t0_Overall.block(6,9,3,3);
 
  425     Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(6,12,3,3);
 
  427     Vector delta_vel_in_t0_corrected = delta_vel_in_t0 + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro;
 
  436       const std::optional<IMUBIAS>& Bias_initial = {}) {
 
  438     Pose2 = 
PredictPoseFromPreIntegration(Pose1, Vel1, Bias1, delta_pos_in_t0, delta_angles, dt12, 
world_g, 
world_rho, 
world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial);
 
  446       Matrix& EquivCov_Overall, 
Matrix& Jacobian_wrt_t0_Overall, 
const IMUBIAS Bias_t0 = IMUBIAS(),
 
  447       std::optional<POSE> p_body_P_sensor = {}){
 
  452     bool flag_use_body_P_sensor = 
false;
 
  453     if (p_body_P_sensor){
 
  455       flag_use_body_P_sensor = 
true;
 
  468     Matrix H_pos_pos = numericalDerivative11<Vector3, Vector3>(
 
  470                     std::placeholders::_1, delta_vel_in_t0),
 
  472     Matrix H_pos_vel = numericalDerivative11<Vector3, Vector3>(
 
  474                     delta_pos_in_t0, std::placeholders::_1),
 
  476     Matrix H_pos_angles = Z_3x3;
 
  479     Matrix H_vel_vel = numericalDerivative11<Vector3, Vector3>(
 
  481                     msr_acc_t, msr_dt, delta_angles, std::placeholders::_1,
 
  484     Matrix H_vel_angles = numericalDerivative11<Vector3, Vector3>(
 
  486                     msr_acc_t, msr_dt, std::placeholders::_1, delta_vel_in_t0,
 
  489     Matrix H_vel_bias = numericalDerivative11<Vector3, IMUBIAS>(
 
  491                     msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0,
 
  493                     std::placeholders::_1),
 
  497     Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(
 
  499                     msr_dt, std::placeholders::_1, flag_use_body_P_sensor,
 
  502     Matrix H_angles_bias = numericalDerivative11<Vector3, IMUBIAS>(
 
  505                     std::placeholders::_1),
 
  507     Matrix H_angles_pos = Z_3x3;
 
  508     Matrix H_angles_vel = Z_3x3;
 
  510     Matrix F_angles = 
collect(4, &H_angles_angles, &H_angles_pos, &H_angles_vel, &H_angles_bias);
 
  511     Matrix F_pos    = 
collect(4, &H_pos_angles, &H_pos_pos, &H_pos_vel, &H_pos_bias);
 
  512     Matrix F_vel    = 
collect(4, &H_vel_angles, &H_vel_pos, &H_vel_vel, &H_vel_bias);
 
  513     Matrix F_bias_a = 
collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3, &Z_3x3);
 
  514     Matrix F_bias_g = 
collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3);
 
  515     Matrix F = 
stack(5, &F_angles, &F_pos, &F_vel, &F_bias_a, &F_bias_g);
 
  519     Matrix Q_d = (model_discrete_curr->R().transpose() * model_discrete_curr->R()).
inverse();
 
  521     EquivCov_Overall = 
F * EquivCov_Overall * 
F.transpose() + Q_d;
 
  526     Jacobian_wrt_t0_Overall = 
F * Jacobian_wrt_t0_Overall;
 
  530       const Vector& delta_pos_in_t0, 
const Vector& delta_vel_in_t0){
 
  535     return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt;
 
  542       IMUBIAS Bias_t0 = IMUBIAS()){
 
  547     Vector AccCorrected  = Bias_t0.correctAccelerometer(msr_acc_t);
 
  549     if (flag_use_body_P_sensor){
 
  552       Vector GyroCorrected(Bias_t0.correctGyroscope(msr_gyro_t));
 
  554       Vector body_omega_body = body_R_sensor * GyroCorrected;
 
  557       body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * 
body_P_sensor.translation().vector();
 
  559       body_t_a_body = AccCorrected;
 
  564     return delta_vel_in_t0 + R_t_to_t0.
matrix() * body_t_a_body * msr_dt;
 
  570       IMUBIAS Bias_t0 = IMUBIAS()){
 
  575     Vector GyroCorrected = Bias_t0.correctGyroscope(msr_gyro_t);
 
  578     if (flag_use_body_P_sensor){
 
  579       body_t_omega_body = 
body_P_sensor.rotation().matrix() * GyroCorrected;
 
  581       body_t_omega_body = GyroCorrected;
 
  586     R_t_to_t0    = R_t_to_t0 * 
Rot3::Expmap( body_t_omega_body*msr_dt );
 
  594     Matrix cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).
inverse();
 
  595     Matrix cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).
inverse();
 
  596     Matrix cov_process = ( gaussian_process->R().transpose() * gaussian_process->R() ).
inverse();
 
  598     cov_process.block(0,0, 3,3) += cov_gyro;
 
  599     cov_process.block(6,6, 3,3) += cov_acc;
 
  608     cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).
inverse();
 
  609     cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).
inverse();
 
  610     cov_process_without_acc_gyro = ( gaussian_process->R().transpose() * gaussian_process->R() ).
inverse();
 
  619         0.0,  0.0, -1.0).finished();
 
  624         0.0,  0.0, -1.0).finished();
 
  627     Vector Pos_ENU = NED_to_ENU * Pos_NED;
 
  628     Vector Vel_ENU = NED_to_ENU * Vel_NED;
 
  629     Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
 
  638     g_NED = ENU_to_NED * g_ENU;
 
  639     rho_NED = ENU_to_NED * rho_ENU;
 
  640     omega_earth_NED = ENU_to_NED * omega_earth_ENU;
 
  645     double R0 = 6.378388e6;
 
  647     double Re( 
R0*( 1-
e*(
sin( LatLonHeight_IC(0) ))*(
sin( LatLonHeight_IC(0) )) ) );
 
  650     Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
 
  651     double delta_lat(delta_Pos_ENU(1)/Re);
 
  652     double delta_lon(delta_Pos_ENU(0)/(Re*
cos(LatLonHeight_IC(0))));
 
  653     double lat_new(LatLonHeight_IC(0) + delta_lat);
 
  654     double lon_new(LatLonHeight_IC(1) + delta_lon);
 
  658         -
sin(lon_new), 
cos(lon_new), 0.0,
 
  664         -
sin(lat_new), 0.0, 
cos(lat_new));
 
  666     Rot3 UEN_to_ENU(0, 1, 0,
 
  670     Rot3 R_ECEF_to_ENU( UEN_to_ENU * 
C2 * 
C1 );
 
  673     omega_earth_ENU = R_ECEF_to_ENU.
matrix() * omega_earth_ECEF;
 
  676     double height(LatLonHeight_IC(2));
 
  677     double EQUA_RADIUS = 6378137.0;        
 
  678     double ECCENTRICITY = 0.0818191908426;  
 
  679     double e2( 
pow(ECCENTRICITY,2) );
 
  680     double den( 1-e2*
pow(
sin(lat_new),2) );
 
  681     double Rm( (EQUA_RADIUS*(1-e2))/( 
pow(den,(3/2)) ) );
 
  682     double Rp( EQUA_RADIUS/( 
sqrt(den) ) );
 
  683     double Ro( 
sqrt(Rp*Rm) );           
 
  684     double g0( 9.780318*( 1 + 5.3024
e-3 * 
pow(
sin(lat_new),2) - 5.9
e-6 * 
pow(
sin(2*lat_new),2) ) );
 
  685     double g_calc( g0/( 
pow(1 + height/Ro, 2) ) );
 
  686     g_ENU = (
Vector(3) << 0.0, 0.0, -g_calc).finished();
 
  690     double Ve( Vel_ENU(0) );
 
  691     double Vn( Vel_ENU(1) );
 
  692     double rho_E = -Vn/(Rm + height);
 
  693     double rho_N = Ve/(Rp + height);
 
  694     double rho_U = Ve*
tan(lat_new)/(Rp + height);
 
  695     rho_ENU = (
Vector(3) << rho_E, rho_N, rho_U).finished();
 
  707 #if GTSAM_ENABLE_BOOST_SERIALIZATION 
  709   friend class boost::serialization::access;
 
  710   template<
class ARCHIVE>
 
  711   void serialize(ARCHIVE & ar, 
const unsigned int ) {
 
  712     ar & boost::serialization::make_nvp(
"NonlinearFactor2",
 
  713         boost::serialization::base_object<Base>(*
this));