Go to the documentation of this file.
   26 using namespace gtsam;
 
   28 int main(
int argc, 
char **argv) {
 
   45   vector<string> pretty = {
"Asia",    
"Dyspnea", 
"XRay",       
"Tuberculosis",
 
   46                            "Smoking", 
"Either",  
"LungCancer", 
"Bronchitis"};
 
   75   cout << 
"\n10 samples:" << endl;
 
   76   for (
size_t i = 0; 
i < 10; 
i++) {
 
   77     auto sample = chordal->sample();
 
  
std::shared_ptr< BayesNetType > eliminateSequential(OptionalOrderingType orderingType={}, const Eliminate &function=EliminationTraitsType::DefaultEliminate, OptionalVariableIndex variableIndex={}) const
static const DiscreteKey Asia(asiaKey, 2)
static const DiscreteBayesTree bayesTree
const KeyFormatter & formatter
void print(const std::string &s="", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const
std::shared_ptr< BayesTreeType > eliminateMultifrontal(OptionalOrderingType orderingType={}, const Eliminate &function=EliminationTraitsType::DefaultEliminate, OptionalVariableIndex variableIndex={}) const
static const DiscreteValues mpe
A class for computing marginals in a DiscreteFactorGraph.
static enum @1096 ordering
const gtsam::Symbol key('X', 0)
std::pair< Key, size_t > DiscreteKey
void add(Args &&... args)
std::shared_ptr< This > shared_ptr
DiscreteValues optimize(OptionalOrderingType orderingType={}) const
Find the maximum probable explanation (MPE) by doing max-product.
std::uint64_t Key
Integer nonlinear key type.
int main(int argc, char **argv)
gtsam
Author(s): 
autogenerated on Wed May 28 2025 03:01:13