Eigen2Support/MathFunctions.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN2_MATH_FUNCTIONS_H
11 #define EIGEN2_MATH_FUNCTIONS_H
12 
13 namespace Eigen {
14 
15 template<typename T> inline typename NumTraits<T>::Real ei_real(const T& x) { return numext::real(x); }
16 template<typename T> inline typename NumTraits<T>::Real ei_imag(const T& x) { return numext::imag(x); }
17 template<typename T> inline T ei_conj(const T& x) { return numext::conj(x); }
18 template<typename T> inline typename NumTraits<T>::Real ei_abs (const T& x) { using std::abs; return abs(x); }
19 template<typename T> inline typename NumTraits<T>::Real ei_abs2(const T& x) { return numext::abs2(x); }
20 template<typename T> inline T ei_sqrt(const T& x) { using std::sqrt; return sqrt(x); }
21 template<typename T> inline T ei_exp (const T& x) { using std::exp; return exp(x); }
22 template<typename T> inline T ei_log (const T& x) { using std::log; return log(x); }
23 template<typename T> inline T ei_sin (const T& x) { using std::sin; return sin(x); }
24 template<typename T> inline T ei_cos (const T& x) { using std::cos; return cos(x); }
25 template<typename T> inline T ei_atan2(const T& x,const T& y) { using std::atan2; return atan2(x,y); }
26 template<typename T> inline T ei_pow (const T& x,const T& y) { return numext::pow(x,y); }
27 template<typename T> inline T ei_random () { return internal::random<T>(); }
28 template<typename T> inline T ei_random (const T& x, const T& y) { return internal::random(x, y); }
29 
30 template<typename T> inline T precision () { return NumTraits<T>::dummy_precision(); }
31 template<typename T> inline T machine_epsilon () { return NumTraits<T>::epsilon(); }
32 
33 
34 template<typename Scalar, typename OtherScalar>
35 inline bool ei_isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
37 {
39 }
40 
41 template<typename Scalar>
42 inline bool ei_isApprox(const Scalar& x, const Scalar& y,
44 {
45  return internal::isApprox(x, y, precision);
46 }
47 
48 template<typename Scalar>
49 inline bool ei_isApproxOrLessThan(const Scalar& x, const Scalar& y,
51 {
53 }
54 
55 } // end namespace Eigen
56 
57 #endif // EIGEN2_MATH_FUNCTIONS_H
const CwiseUnaryOp< internal::scalar_pow_op< Scalar >, const Derived > pow(const Scalar &exponent) const
T ei_conj(const T &x)
Definition: LDLT.h:16
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:88
bool ei_isApproxOrLessThan(const Scalar &x, const Scalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
bool isMuchSmallerThan(const Scalar &x, const OtherScalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs2_op< Scalar >, const Derived > abs2() const
const ImagReturnType imag() const
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs_op< Scalar >, const Derived > abs() const
RealReturnType real() const
T ei_pow(const T &x, const T &y)
NumTraits< T >::Real ei_abs2(const T &x)
bool ei_isMuchSmallerThan(const Scalar &x, const OtherScalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
bool isApprox(const Scalar &x, const Scalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
NumTraits< T >::Real ei_real(const T &x)
T ei_cos(const T &x)
const CwiseUnaryOp< internal::scalar_log_op< Scalar >, const Derived > log() const
T ei_log(const T &x)
const CwiseUnaryOp< internal::scalar_sin_op< Scalar >, const Derived > sin() const
T ei_sin(const T &x)
T ei_sqrt(const T &x)
NumTraits< T >::Real ei_imag(const T &x)
bool ei_isApprox(const Scalar &x, const Scalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
NumTraits< T >::Real ei_abs(const T &x)
bool isApproxOrLessThan(const Scalar &x, const Scalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
const CwiseUnaryOp< internal::scalar_cos_op< Scalar >, const Derived > cos() const
T ei_atan2(const T &x, const T &y)
const CwiseUnaryOp< internal::scalar_sqrt_op< Scalar >, const Derived > sqrt() const
const CwiseUnaryOp< internal::scalar_exp_op< Scalar >, const Derived > exp() const
T ei_exp(const T &x)


tuw_aruco
Author(s): Lukas Pfeifhofer
autogenerated on Mon Jun 10 2019 15:40:53