29 #include "../Core/util/NonMPL2.h"    31 #ifndef EIGEN_SPARSE_AMD_H    32 #define EIGEN_SPARSE_AMD_H    38 template<
typename T> 
inline T 
amd_flip(
const T& i) { 
return -i-2; }
    40 template<
typename T0, 
typename T1> 
inline bool amd_marked(
const T0* w, 
const T1& j) { 
return w[j]<0; }
    41 template<
typename T0, 
typename T1> 
inline void amd_mark(
const T0* w, 
const T1& j) { 
return w[j] = 
amd_flip(w[j]); }
    44 template<
typename Index>
    45 static int cs_wclear (Index mark, Index lemax, Index *w, Index n)
    48   if(mark < 2 || (mark + lemax < 0))
    50     for(k = 0; k < n; k++)
    59 template<
typename Index>
    60 Index 
cs_tdfs(Index j, Index k, Index *
head, 
const Index *next, Index *post, Index *stack)
    63   if(!head || !next || !post || !stack) 
return (-1);    
    90 template<
typename Scalar, 
typename Index>
    95   int d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
    96       k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
    97       ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t;
   101   dense = std::max<Index> (16, Index(10 * 
sqrt(
double(n))));   
   102   dense = std::min<Index> (n-2, dense);
   106   t = cnz + cnz/5 + 2*n;                 
   109   Index* W       = 
new Index[8*(n+1)]; 
   111   Index* nv      = W +   (n+1);
   112   Index* next    = W + 2*(n+1);
   113   Index* 
head    = W + 3*(n+1);
   114   Index* elen    = W + 4*(n+1);
   115   Index* degree  = W + 5*(n+1);
   116   Index* 
w       = W + 6*(n+1);
   117   Index* hhead   = W + 7*(n+1);
   118   Index* last    = perm.
indices().data();                              
   123   for(k = 0; k < n; k++)
   124     len[k] = Cp[k+1] - Cp[k];
   128   for(i = 0; i <= n; i++)
   139   mark = internal::cs_wclear<Index>(0, 0, w, n);         
   145   for(i = 0; i < n; i++)
   165       if(head[d] != -1) last[head[d]] = i;
   174     for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {}
   175     if(next[k] != -1) last[next[k]] = -1;
   176     head[mindeg] = next[k];          
   182     if(elenk > 0 && cnz + mindeg >= nzmax)
   184       for(j = 0; j < n; j++)
   192       for(q = 0, p = 0; p < cnz; ) 
   198           for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++];
   208     pk1 = (elenk == 0) ? p : cnz;      
   210     for(k1 = 1; k1 <= elenk + 1; k1++)
   224       for(k2 = 1; k2 <= ln; k2++)
   227         if((nvi = nv[i]) <= 0) 
continue; 
   231         if(next[i] != -1) last[next[i]] = last[i];
   234           next[last[i]] = next[i];
   238           head[degree[i]] = next[i];
   247     if(elenk != 0) cnz = pk2;         
   254     mark = internal::cs_wclear<Index>(mark, lemax, w, n);  
   255     for(pk = pk1; pk < pk2; pk++)    
   258       if((eln = elen[i]) <= 0) 
continue;
   261       for(p = Cp[i]; p <= Cp[i] + eln - 1; p++)  
   270           w[e] = degree[e] + wnvi; 
   276     for(pk = pk1; pk < pk2; pk++)    
   280       p2 = p1 + elen[i] - 1;
   282       for(h = 0, d = 0, p = p1; p <= p2; p++)    
   301       elen[i] = pn - p1 + 1;        
   304       for(p = p2 + 1; p < p4; p++) 
   307         if((nvj = nv[j]) <= 0) 
continue; 
   324         degree[i] = std::min<Index> (degree[i], d);   
   328         len[i] = pn - p1 + 1;     
   336     lemax = std::max<Index>(lemax, dk);
   337     mark = internal::cs_wclear<Index>(mark+lemax, lemax, w, n);    
   340     for(pk = pk1; pk < pk2; pk++)
   343       if(nv[i] >= 0) 
continue;         
   347       for(; i != -1 && next[i] != -1; i = next[i], mark++)
   351         for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark;
   353         for(j = next[i]; j != -1; ) 
   355           ok = (len[j] == ln) && (elen[j] == eln);
   356           for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++)
   358             if(w[Ci[p]] != mark) ok = 0;    
   379     for(p = pk1, pk = pk1; pk < pk2; pk++)   
   382       if((nvi = -nv[i]) <= 0) 
continue;
   384       d = degree[i] + dk - nvi;         
   385       d = std::min<Index> (d, n - nel - nvi);
   386       if(head[d] != -1) last[head[d]] = i;
   390       mindeg = std::min<Index> (mindeg, d);       
   395     if((len[k] = p-pk1) == 0)         
   400     if(elenk != 0) cnz = p;           
   404   for(i = 0; i < n; i++) Cp[i] = 
amd_flip (Cp[i]);
   405   for(j = 0; j <= n; j++) head[j] = -1;
   406   for(j = n; j >= 0; j--)              
   408     if(nv[j] > 0) 
continue;          
   409     next[j] = head[Cp[j]];          
   412   for(e = n; e >= 0; e--)              
   414     if(nv[e] <= 0) 
continue;         
   417       next[e] = head[Cp[e]];      
   421   for(k = 0, i = 0; i <= n; i++)       
   423     if(Cp[i] == -1) k = internal::cs_tdfs<Index>(i, k, 
head, next, perm.
indices().data(), w);
   426   perm.
indices().conservativeResize(n);
   435 #endif // EIGEN_SPARSE_AMD_H 
void amd_mark(const T0 *w, const T1 &j)
void resizeNonZeros(Index size)
const Index * outerIndexPtr() const 
Index cs_tdfs(Index j, Index k, Index *head, const Index *next, Index *post, Index *stack)
bool amd_marked(const T0 *w, const T1 &j)
void minimum_degree_ordering(SparseMatrix< Scalar, ColMajor, Index > &C, PermutationMatrix< Dynamic, Dynamic, Index > &perm)
static int cs_wclear(Index mark, Index lemax, Index *w, Index n)
SegmentReturnType head(Index vecSize)
TFSIMD_FORCE_INLINE const tfScalar & w() const 
const IndicesType & indices() const 
const Index * innerIndexPtr() const 
const CwiseUnaryOp< internal::scalar_sqrt_op< Scalar >, const Derived > sqrt() const 
void resize(Index newSize)