IceTriangle.cpp
Go to the documentation of this file.
1 
8 
11 // Precompiled Header
12 #include "Stdafx.h"
13 
14 using namespace IceMaths;
15 
17 
25 
27 static sdword VPlaneSideEps(const Point& v, const Plane& plane, float epsilon)
28 {
29  // Compute distance from current vertex to the plane
30  float Dist = plane.Distance(v);
31  // Compute side:
32  // 1 = the vertex is on the positive side of the plane
33  // -1 = the vertex is on the negative side of the plane
34  // 0 = the vertex is on the plane (within epsilon)
35  return Dist > epsilon ? 1 : Dist < -epsilon ? -1 : 0;
36 }
37 
39 
42 void Triangle::Flip()
44 {
45  Point Tmp = mVerts[1];
46  mVerts[1] = mVerts[2];
47  mVerts[2] = Tmp;
48 }
49 
51 
55 float Triangle::Area() const
57 {
58  const Point& p0 = mVerts[0];
59  const Point& p1 = mVerts[1];
60  const Point& p2 = mVerts[2];
61  return ((p0 - p1)^(p0 - p2)).Magnitude() * 0.5f;
62 }
63 
65 
69 float Triangle::Perimeter() const
71 {
72  const Point& p0 = mVerts[0];
73  const Point& p1 = mVerts[1];
74  const Point& p2 = mVerts[2];
75  return p0.Distance(p1)
76  + p0.Distance(p2)
77  + p1.Distance(p2);
78 }
79 
81 
85 float Triangle::Compacity() const
87 {
88  float P = Perimeter();
89  if(P==0.0f) return 0.0f;
90  return (4.0f*PI*Area()/(P*P));
91 }
92 
94 
98 void Triangle::Normal(Point& normal) const
100 {
101  const Point& p0 = mVerts[0];
102  const Point& p1 = mVerts[1];
103  const Point& p2 = mVerts[2];
104  normal = ((p0 - p1)^(p0 - p2)).Normalize();
105 }
106 
108 
112 void Triangle::DenormalizedNormal(Point& normal) const
114 {
115  const Point& p0 = mVerts[0];
116  const Point& p1 = mVerts[1];
117  const Point& p2 = mVerts[2];
118  normal = ((p0 - p1)^(p0 - p2));
119 }
120 
122 
126 void Triangle::Center(Point& center) const
128 {
129  const Point& p0 = mVerts[0];
130  const Point& p1 = mVerts[1];
131  const Point& p2 = mVerts[2];
132  center = (p0 + p1 + p2)*INV3;
133 }
134 
135 PartVal Triangle::TestAgainstPlane(const Plane& plane, float epsilon) const
136 {
137  bool Pos = false, Neg = false;
138 
139  // Loop through all vertices
140  for(udword i=0;i<3;i++)
141  {
142  // Compute side:
143  sdword Side = VPlaneSideEps(mVerts[i], plane, epsilon);
144 
145  if (Side < 0) Neg = true;
146  else if (Side > 0) Pos = true;
147  }
148 
149  if (!Pos && !Neg) return TRI_ON_PLANE;
150  else if (Pos && Neg) return TRI_INTERSECT;
151  else if (Pos && !Neg) return TRI_PLUS_SPACE;
152  else if (!Pos && Neg) return TRI_MINUS_SPACE;
153 
154  // What?!
155  return TRI_FORCEDWORD;
156 }
157 
159 
163 /*
165 void Triangle::ComputeMoment(Moment& m)
166 {
167  // Compute the area of the triangle
168  m.mArea = Area();
169 
170  // Compute the centroid
171  Center(m.mCentroid);
172 
173  // Second-order components. Handle zero-area faces.
174  Point& p = mVerts[0];
175  Point& q = mVerts[1];
176  Point& r = mVerts[2];
177  if(m.mArea==0.0f)
178  {
179  // This triangle has zero area. The second order components would be eliminated with the usual formula, so, for the
180  // sake of robustness we use an alternative form. These are the centroid and second-order components of the triangle's vertices.
181  m.mCovariance.m[0][0] = (p.x*p.x + q.x*q.x + r.x*r.x);
182  m.mCovariance.m[0][1] = (p.x*p.y + q.x*q.y + r.x*r.y);
183  m.mCovariance.m[0][2] = (p.x*p.z + q.x*q.z + r.x*r.z);
184  m.mCovariance.m[1][1] = (p.y*p.y + q.y*q.y + r.y*r.y);
185  m.mCovariance.m[1][2] = (p.y*p.z + q.y*q.z + r.y*r.z);
186  m.mCovariance.m[2][2] = (p.z*p.z + q.z*q.z + r.z*r.z);
187  m.mCovariance.m[2][1] = m.mCovariance.m[1][2];
188  m.mCovariance.m[1][0] = m.mCovariance.m[0][1];
189  m.mCovariance.m[2][0] = m.mCovariance.m[0][2];
190  }
191  else
192  {
193  const float OneOverTwelve = 1.0f / 12.0f;
194  m.mCovariance.m[0][0] = m.mArea * (9.0f * m.mCentroid.x*m.mCentroid.x + p.x*p.x + q.x*q.x + r.x*r.x) * OneOverTwelve;
195  m.mCovariance.m[0][1] = m.mArea * (9.0f * m.mCentroid.x*m.mCentroid.y + p.x*p.y + q.x*q.y + r.x*r.y) * OneOverTwelve;
196  m.mCovariance.m[1][1] = m.mArea * (9.0f * m.mCentroid.y*m.mCentroid.y + p.y*p.y + q.y*q.y + r.y*r.y) * OneOverTwelve;
197  m.mCovariance.m[0][2] = m.mArea * (9.0f * m.mCentroid.x*m.mCentroid.z + p.x*p.z + q.x*q.z + r.x*r.z) * OneOverTwelve;
198  m.mCovariance.m[1][2] = m.mArea * (9.0f * m.mCentroid.y*m.mCentroid.z + p.y*p.z + q.y*q.z + r.y*r.z) * OneOverTwelve;
199  m.mCovariance.m[2][2] = m.mArea * (9.0f * m.mCentroid.z*m.mCentroid.z + p.z*p.z + q.z*q.z + r.z*r.z) * OneOverTwelve;
200  m.mCovariance.m[2][1] = m.mCovariance.m[1][2];
201  m.mCovariance.m[1][0] = m.mCovariance.m[0][1];
202  m.mCovariance.m[2][0] = m.mCovariance.m[0][2];
203  }
204 }
205 */
206 
208 
212 float Triangle::MinEdgeLength() const
214 {
215  float Min = MAX_FLOAT;
216  float Length01 = mVerts[0].Distance(mVerts[1]);
217  float Length02 = mVerts[0].Distance(mVerts[2]);
218  float Length12 = mVerts[1].Distance(mVerts[2]);
219  if(Length01 < Min) Min = Length01;
220  if(Length02 < Min) Min = Length02;
221  if(Length12 < Min) Min = Length12;
222  return Min;
223 }
224 
226 
230 float Triangle::MaxEdgeLength() const
232 {
233  float Max = MIN_FLOAT;
234  float Length01 = mVerts[0].Distance(mVerts[1]);
235  float Length02 = mVerts[0].Distance(mVerts[2]);
236  float Length12 = mVerts[1].Distance(mVerts[2]);
237  if(Length01 > Max) Max = Length01;
238  if(Length02 > Max) Max = Length02;
239  if(Length12 > Max) Max = Length12;
240  return Max;
241 }
242 
244 
250 void Triangle::ComputePoint(float u, float v, Point& pt, udword* nearvtx) const
252 {
253  // Compute point coordinates
254  pt = (1.0f - u - v)*mVerts[0] + u*mVerts[1] + v*mVerts[2];
255 
256  // Compute nearest vertex if needed
257  if(nearvtx)
258  {
259  // Compute distance vector
260  Point d(mVerts[0].SquareDistance(pt), // Distance^2 from vertex 0 to point on the face
261  mVerts[1].SquareDistance(pt), // Distance^2 from vertex 1 to point on the face
262  mVerts[2].SquareDistance(pt)); // Distance^2 from vertex 2 to point on the face
263 
264  // Get smallest distance
265  *nearvtx = d.SmallestAxis();
266  }
267 }
268 
269 void Triangle::Inflate(float fat_coeff, bool constant_border)
270 {
271  // Compute triangle center
272  Point TriangleCenter;
273  Center(TriangleCenter);
274 
275  // Don't normalize?
276  // Normalize => add a constant border, regardless of triangle size
277  // Don't => add more to big triangles
278  for(udword i=0;i<3;i++)
279  {
280  Point v = mVerts[i] - TriangleCenter;
281 
282  if(constant_border) v.Normalize();
283 
284  mVerts[i] += v * fat_coeff;
285  }
286 }
void Flip()
Definition: IceTriangle.cpp:43
void ComputePoint(float u, float v, Point &pt, udword *nearvtx=null) const
signed int sdword
sizeof(sdword) must be 4
Definition: IceTypes.h:64
void DenormalizedNormal(Point &normal) const
float Perimeter() const
Definition: IceTriangle.cpp:70
PartVal
Definition: IceTriangle.h:19
inline_ PointComponent SmallestAxis() const
Returns smallest axis.
Definition: OPC_IceHook.h:363
ush Pos
Definition: deflate.h:86
float Area() const
Definition: IceTriangle.cpp:56
void Inflate(float fat_coeff, bool constant_border)
inline_ float Magnitude() const
Computes magnitude.
Definition: OPC_IceHook.h:220
png_uint_32 i
Definition: png.h:2735
PartVal TestAgainstPlane(const Plane &plane, float epsilon) const
void Center(Point &center) const
inline_ float Distance(const Point &p) const
Definition: OPC_IceHook.h:41
unsigned int udword
sizeof(udword) must be 4
Definition: IceTypes.h:65
Triangle and plane are coplanar.
Definition: IceTriangle.h:24
float MinEdgeLength() const
Triangle intersects plane.
Definition: IceTriangle.h:23
#define MAX_FLOAT
max possible float value
Definition: IceTypes.h:130
#define PI
PI.
Definition: IceTypes.h:32
float Compacity() const
Definition: IceTriangle.cpp:86
Triangle is in the negative space.
Definition: IceTriangle.h:21
#define INV3
1/3
Definition: IceTypes.h:45
void Normal(Point &normal) const
Definition: IceTriangle.cpp:99
Triangle is in the positive space.
Definition: IceTriangle.h:22
float MaxEdgeLength() const
static sdword VPlaneSideEps(const Point &v, const Plane &plane, float epsilon)
Definition: IceTriangle.cpp:27
inline_ Point & Normalize()
Normalizes the vector.
Definition: OPC_IceHook.h:270
#define MIN_FLOAT
min possible loat value
Definition: IceTypes.h:131
inline_ float Distance(const Point &b) const
Computes distance to another point.
Definition: OPC_IceHook.h:312


openhrp3
Author(s): AIST, General Robotix Inc., Nakamura Lab of Dept. of Mechano Informatics at University of Tokyo
autogenerated on Sat May 8 2021 02:42:38