50 x.
x = det * (a22 * b.
x - a12 * b.
y);
51 x.
y = det * (a11 * b.
y - a21 * b.
x);
65 M->
ex.
x = det *
d; M->
ey.
x = -det *
b; M->
ex.
z = 0.0f;
66 M->
ex.
y = -det * c; M->
ey.
y = det * a; M->
ey.
z = 0.0f;
67 M->
ez.
x = 0.0f; M->
ez.
y = 0.0f; M->
ez.
z = 0.0f;
83 M->
ex.
x = det * (a22 * a33 - a23 * a23);
84 M->
ex.
y = det * (a13 * a23 - a12 * a33);
85 M->
ex.
z = det * (a12 * a23 - a13 * a22);
88 M->
ey.
y = det * (a11 * a33 - a13 * a13);
89 M->
ey.
z = det * (a13 * a12 - a11 * a23);
93 M->
ez.
z = det * (a11 * a22 - a12 * a12);
GLboolean GLboolean GLboolean GLboolean a
float32 b2Dot(const b2Vec2 &a, const b2Vec2 &b)
Perform the dot product on two vectors.
const b2Vec2 b2Vec2_zero(0.0f, 0.0f)
Useful constant.
void GetInverse22(b2Mat33 *M) const
float32 b2Cross(const b2Vec2 &a, const b2Vec2 &b)
Perform the cross product on two vectors. In 2D this produces a scalar.
A 2D column vector with 3 elements.
GLint GLint GLint GLint GLint x
A 3-by-3 matrix. Stored in column-major order.
b2Vec2 Solve22(const b2Vec2 &b) const
b2Vec3 Solve33(const b2Vec3 &b) const
void GetSymInverse33(b2Mat33 *M) const
Returns the zero matrix if singular.
GLdouble GLdouble GLdouble b
EIGEN_STRONG_INLINE Scalar det() const
GLdouble GLdouble GLdouble GLdouble GLdouble GLdouble f