test_numpy_vectorize.cpp
Go to the documentation of this file.
1 /*
2  tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
3  arguments
4 
5  Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
6 
7  All rights reserved. Use of this source code is governed by a
8  BSD-style license that can be found in the LICENSE file.
9 */
10 
11 #include "pybind11_tests.h"
12 #include <pybind11/numpy.h>
13 
14 double my_func(int x, float y, double z) {
15  py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z));
16  return (float) x*y*z;
17 }
18 
19 TEST_SUBMODULE(numpy_vectorize, m) {
20  try { py::module::import("numpy"); }
21  catch (...) { return; }
22 
23  // test_vectorize, test_docs, test_array_collapse
24  // Vectorize all arguments of a function (though non-vector arguments are also allowed)
25  m.def("vectorized_func", py::vectorize(my_func));
26 
27  // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
28  m.def("vectorized_func2",
29  [](py::array_t<int> x, py::array_t<float> y, float z) {
30  return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y);
31  }
32  );
33 
34  // Vectorize a complex-valued function
35  m.def("vectorized_func3", py::vectorize(
36  [](std::complex<double> c) { return c * std::complex<double>(2.f); }
37  ));
38 
39  // test_type_selection
40  // NumPy function which only accepts specific data types
41  m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; });
42  m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; });
43  m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; });
44 
45 
46  // test_passthrough_arguments
47  // Passthrough test: references and non-pod types should be automatically passed through (in the
48  // function definition below, only `b`, `d`, and `g` are vectorized):
49  struct NonPODClass {
50  NonPODClass(int v) : value{v} {}
51  int value;
52  };
53  py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>());
54  m.def("vec_passthrough", py::vectorize(
55  [](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) {
56  return *a + b + c.at(0) + d + e + f.value + g;
57  }
58  ));
59 
60  // test_method_vectorization
61  struct VectorizeTestClass {
62  VectorizeTestClass(int v) : value{v} {};
63  float method(int x, float y) { return y + (float) (x + value); }
64  int value = 0;
65  };
66  py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass");
67  vtc .def(py::init<int>())
68  .def_readwrite("value", &VectorizeTestClass::value);
69 
70  // Automatic vectorizing of methods
71  vtc.def("method", py::vectorize(&VectorizeTestClass::method));
72 
73  // test_trivial_broadcasting
74  // Internal optimization test for whether the input is trivially broadcastable:
75  py::enum_<py::detail::broadcast_trivial>(m, "trivial")
76  .value("f_trivial", py::detail::broadcast_trivial::f_trivial)
77  .value("c_trivial", py::detail::broadcast_trivial::c_trivial)
78  .value("non_trivial", py::detail::broadcast_trivial::non_trivial);
79  m.def("vectorized_is_trivial", [](
80  py::array_t<int, py::array::forcecast> arg1,
81  py::array_t<float, py::array::forcecast> arg2,
82  py::array_t<double, py::array::forcecast> arg3
83  ) {
84  ssize_t ndim;
85  std::vector<ssize_t> shape;
86  std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }};
87  return py::detail::broadcast(buffers, ndim, shape);
88  });
89 }
void print(const Matrix &A, const string &s, ostream &stream)
Definition: Matrix.cpp:155
Matrix3f m
double my_func(int x, float y, double z)
Scalar * y
Scalar * b
Definition: benchVecAdd.cpp:17
ArrayXcf v
Definition: Cwise_arg.cpp:1
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
void g(const string &key, int i)
Definition: testBTree.cpp:43
Array33i a
detail::vectorize_helper< Return(*)(Args...), Return, Args... > vectorize(Return(*f)(Args...))
Definition: numpy.h:1626
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
Array< double, 1, 3 > e(1./3., 0.5, 2.)
TEST_SUBMODULE(numpy_vectorize, m)
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
broadcast_trivial broadcast(const std::array< buffer_info, N > &buffers, ssize_t &ndim, std::vector< ssize_t > &shape)
Definition: numpy.h:1398


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:46:03