product_small.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_NO_STATIC_ASSERT
11 #include "product.h"
12 #include <Eigen/LU>
13 
14 // regression test for bug 447
15 template<int>
16 void product1x1()
17 {
18  Matrix<float,1,3> matAstatic;
19  Matrix<float,3,1> matBstatic;
20  matAstatic.setRandom();
21  matBstatic.setRandom();
22  VERIFY_IS_APPROX( (matAstatic * matBstatic).coeff(0,0),
23  matAstatic.cwiseProduct(matBstatic.transpose()).sum() );
24 
25  MatrixXf matAdynamic(1,3);
26  MatrixXf matBdynamic(3,1);
27  matAdynamic.setRandom();
28  matBdynamic.setRandom();
29  VERIFY_IS_APPROX( (matAdynamic * matBdynamic).coeff(0,0),
30  matAdynamic.cwiseProduct(matBdynamic.transpose()).sum() );
31 }
32 
33 template<typename TC, typename TA, typename TB>
34 const TC& ref_prod(TC &C, const TA &A, const TB &B)
35 {
36  for(Index i=0;i<C.rows();++i)
37  for(Index j=0;j<C.cols();++j)
38  for(Index k=0;k<A.cols();++k)
39  C.coeffRef(i,j) += A.coeff(i,k) * B.coeff(k,j);
40  return C;
41 }
42 
43 template<typename T, int Rows, int Cols, int Depth, int OC, int OA, int OB>
44 typename internal::enable_if<! ( (Rows ==1&&Depth!=1&&OA==ColMajor)
45  || (Depth==1&&Rows !=1&&OA==RowMajor)
46  || (Cols ==1&&Depth!=1&&OB==RowMajor)
47  || (Depth==1&&Cols !=1&&OB==ColMajor)
48  || (Rows ==1&&Cols !=1&&OC==ColMajor)
49  || (Cols ==1&&Rows !=1&&OC==RowMajor)),void>::type
50 test_lazy_single(int rows, int cols, int depth)
51 {
52  Matrix<T,Rows,Depth,OA> A(rows,depth); A.setRandom();
53  Matrix<T,Depth,Cols,OB> B(depth,cols); B.setRandom();
54  Matrix<T,Rows,Cols,OC> C(rows,cols); C.setRandom();
56  VERIFY_IS_APPROX(C+=A.lazyProduct(B), ref_prod(D,A,B));
57 }
58 
59 template<typename T, int Rows, int Cols, int Depth, int OC, int OA, int OB>
60 typename internal::enable_if< ( (Rows ==1&&Depth!=1&&OA==ColMajor)
61  || (Depth==1&&Rows !=1&&OA==RowMajor)
62  || (Cols ==1&&Depth!=1&&OB==RowMajor)
63  || (Depth==1&&Cols !=1&&OB==ColMajor)
64  || (Rows ==1&&Cols !=1&&OC==ColMajor)
65  || (Cols ==1&&Rows !=1&&OC==RowMajor)),void>::type
66 test_lazy_single(int, int, int)
67 {
68 }
69 
70 template<typename T, int Rows, int Cols, int Depth>
71 void test_lazy_all_layout(int rows=Rows, int cols=Cols, int depth=Depth)
72 {
73  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,ColMajor,ColMajor>(rows,cols,depth) ));
74  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,ColMajor,ColMajor>(rows,cols,depth) ));
75  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,RowMajor,ColMajor>(rows,cols,depth) ));
76  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,RowMajor,ColMajor>(rows,cols,depth) ));
77  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,ColMajor,RowMajor>(rows,cols,depth) ));
78  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,ColMajor,RowMajor>(rows,cols,depth) ));
79  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,RowMajor,RowMajor>(rows,cols,depth) ));
80  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,RowMajor,RowMajor>(rows,cols,depth) ));
81 }
82 
83 template<typename T>
85 {
86  int rows = internal::random<int>(1,12);
87  int cols = internal::random<int>(1,12);
88  int depth = internal::random<int>(1,12);
89 
90  // Inner
91  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,1>() ));
92  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,2>() ));
93  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,3>() ));
94  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,8>() ));
95  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,9>() ));
96  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,-1>(1,1,depth) ));
97 
98  // Outer
99  CALL_SUBTEST(( test_lazy_all_layout<T,2,1,1>() ));
100  CALL_SUBTEST(( test_lazy_all_layout<T,1,2,1>() ));
101  CALL_SUBTEST(( test_lazy_all_layout<T,2,2,1>() ));
102  CALL_SUBTEST(( test_lazy_all_layout<T,3,3,1>() ));
103  CALL_SUBTEST(( test_lazy_all_layout<T,4,4,1>() ));
104  CALL_SUBTEST(( test_lazy_all_layout<T,4,8,1>() ));
105  CALL_SUBTEST(( test_lazy_all_layout<T,4,-1,1>(4,cols) ));
106  CALL_SUBTEST(( test_lazy_all_layout<T,7,-1,1>(7,cols) ));
107  CALL_SUBTEST(( test_lazy_all_layout<T,-1,8,1>(rows) ));
108  CALL_SUBTEST(( test_lazy_all_layout<T,-1,3,1>(rows) ));
109  CALL_SUBTEST(( test_lazy_all_layout<T,-1,-1,1>(rows,cols) ));
110 }
111 
112 template<typename T>
114 {
115  int rows = internal::random<int>(1,12);
116  int cols = internal::random<int>(1,12);
117  int depth = internal::random<int>(1,12);
118 
119  // mat-vec
120  CALL_SUBTEST(( test_lazy_all_layout<T,2,1,2>() ));
121  CALL_SUBTEST(( test_lazy_all_layout<T,2,1,4>() ));
122  CALL_SUBTEST(( test_lazy_all_layout<T,4,1,2>() ));
123  CALL_SUBTEST(( test_lazy_all_layout<T,4,1,4>() ));
124  CALL_SUBTEST(( test_lazy_all_layout<T,5,1,4>() ));
125  CALL_SUBTEST(( test_lazy_all_layout<T,4,1,5>() ));
126  CALL_SUBTEST(( test_lazy_all_layout<T,4,1,6>() ));
127  CALL_SUBTEST(( test_lazy_all_layout<T,6,1,4>() ));
128  CALL_SUBTEST(( test_lazy_all_layout<T,8,1,8>() ));
129  CALL_SUBTEST(( test_lazy_all_layout<T,-1,1,4>(rows) ));
130  CALL_SUBTEST(( test_lazy_all_layout<T,4,1,-1>(4,1,depth) ));
131  CALL_SUBTEST(( test_lazy_all_layout<T,-1,1,-1>(rows,1,depth) ));
132 
133  // vec-mat
134  CALL_SUBTEST(( test_lazy_all_layout<T,1,2,2>() ));
135  CALL_SUBTEST(( test_lazy_all_layout<T,1,2,4>() ));
136  CALL_SUBTEST(( test_lazy_all_layout<T,1,4,2>() ));
137  CALL_SUBTEST(( test_lazy_all_layout<T,1,4,4>() ));
138  CALL_SUBTEST(( test_lazy_all_layout<T,1,5,4>() ));
139  CALL_SUBTEST(( test_lazy_all_layout<T,1,4,5>() ));
140  CALL_SUBTEST(( test_lazy_all_layout<T,1,4,6>() ));
141  CALL_SUBTEST(( test_lazy_all_layout<T,1,6,4>() ));
142  CALL_SUBTEST(( test_lazy_all_layout<T,1,8,8>() ));
143  CALL_SUBTEST(( test_lazy_all_layout<T,1,-1, 4>(1,cols) ));
144  CALL_SUBTEST(( test_lazy_all_layout<T,1, 4,-1>(1,4,depth) ));
145  CALL_SUBTEST(( test_lazy_all_layout<T,1,-1,-1>(1,cols,depth) ));
146 }
147 
148 template<typename T>
150 {
151  int rows = internal::random<int>(1,12);
152  int cols = internal::random<int>(1,12);
153  int depth = internal::random<int>(1,12);
154  // mat-mat
155  CALL_SUBTEST(( test_lazy_all_layout<T,2,4,2>() ));
156  CALL_SUBTEST(( test_lazy_all_layout<T,2,6,4>() ));
157  CALL_SUBTEST(( test_lazy_all_layout<T,4,3,2>() ));
158  CALL_SUBTEST(( test_lazy_all_layout<T,4,8,4>() ));
159  CALL_SUBTEST(( test_lazy_all_layout<T,5,6,4>() ));
160  CALL_SUBTEST(( test_lazy_all_layout<T,4,2,5>() ));
161  CALL_SUBTEST(( test_lazy_all_layout<T,4,7,6>() ));
162  CALL_SUBTEST(( test_lazy_all_layout<T,6,8,4>() ));
163  CALL_SUBTEST(( test_lazy_all_layout<T,8,3,8>() ));
164  CALL_SUBTEST(( test_lazy_all_layout<T,-1,6,4>(rows) ));
165  CALL_SUBTEST(( test_lazy_all_layout<T,4,3,-1>(4,3,depth) ));
166  CALL_SUBTEST(( test_lazy_all_layout<T,-1,6,-1>(rows,6,depth) ));
167  CALL_SUBTEST(( test_lazy_all_layout<T,8,2,2>() ));
168  CALL_SUBTEST(( test_lazy_all_layout<T,5,2,4>() ));
169  CALL_SUBTEST(( test_lazy_all_layout<T,4,4,2>() ));
170  CALL_SUBTEST(( test_lazy_all_layout<T,8,4,4>() ));
171  CALL_SUBTEST(( test_lazy_all_layout<T,6,5,4>() ));
172  CALL_SUBTEST(( test_lazy_all_layout<T,4,4,5>() ));
173  CALL_SUBTEST(( test_lazy_all_layout<T,3,4,6>() ));
174  CALL_SUBTEST(( test_lazy_all_layout<T,2,6,4>() ));
175  CALL_SUBTEST(( test_lazy_all_layout<T,7,8,8>() ));
176  CALL_SUBTEST(( test_lazy_all_layout<T,8,-1, 4>(8,cols) ));
177  CALL_SUBTEST(( test_lazy_all_layout<T,3, 4,-1>(3,4,depth) ));
178  CALL_SUBTEST(( test_lazy_all_layout<T,4,-1,-1>(4,cols,depth) ));
179 }
180 
181 template<typename T,int N,int M,int K>
183 {
184  // Check tricky cases for which the result of the product is a vector and thus must exhibit the LinearBit flag,
185  // but is not vectorizable along the linear dimension.
186  Index n = N==Dynamic ? internal::random<Index>(1,32) : N;
187  Index m = M==Dynamic ? internal::random<Index>(1,32) : M;
188  Index k = K==Dynamic ? internal::random<Index>(1,32) : K;
189 
190  {
191  Matrix<T,N,M+1> A; A.setRandom(n,m+1);
192  Matrix<T,M*2,K> B; B.setRandom(m*2,k);
195 
196  C.noalias() = A.template topLeftCorner<1,M>() * (B.template topRows<M>()+B.template bottomRows<M>());
197  R.noalias() = A.template topLeftCorner<1,M>() * (B.template topRows<M>()+B.template bottomRows<M>()).eval();
198  VERIFY_IS_APPROX(C,R);
199  }
200 
201  {
206 
207  C.noalias() = (B.template leftCols<M>()+B.template rightCols<M>()) * A.template topLeftCorner<M,1>();
208  R.noalias() = (B.template leftCols<M>()+B.template rightCols<M>()).eval() * A.template topLeftCorner<M,1>();
209  VERIFY_IS_APPROX(C,R);
210  }
211 }
212 
213 template<int Rows>
214 void bug_1311()
215 {
217  Vector2d b = Vector2d::Random() ;
219  res.noalias() = 1. * (A * b);
220  VERIFY_IS_APPROX(res, A*b);
221  res.noalias() = 1.*A * b;
222  VERIFY_IS_APPROX(res, A*b);
223  res.noalias() = (1.*A).lazyProduct(b);
224  VERIFY_IS_APPROX(res, A*b);
225  res.noalias() = (1.*A).lazyProduct(1.*b);
226  VERIFY_IS_APPROX(res, A*b);
227  res.noalias() = (A).lazyProduct(1.*b);
228  VERIFY_IS_APPROX(res, A*b);
229 }
230 
232 {
233  for(int i = 0; i < g_repeat; i++) {
234  CALL_SUBTEST_1( product(Matrix<float, 3, 2>()) );
235  CALL_SUBTEST_2( product(Matrix<int, 3, 17>()) );
236  CALL_SUBTEST_8( product(Matrix<double, 3, 17>()) );
237  CALL_SUBTEST_3( product(Matrix3d()) );
238  CALL_SUBTEST_4( product(Matrix4d()) );
239  CALL_SUBTEST_5( product(Matrix4f()) );
240  CALL_SUBTEST_6( product1x1<0>() );
241 
242  CALL_SUBTEST_11( test_lazy_l1<float>() );
243  CALL_SUBTEST_12( test_lazy_l2<float>() );
244  CALL_SUBTEST_13( test_lazy_l3<float>() );
245 
246  CALL_SUBTEST_21( test_lazy_l1<double>() );
247  CALL_SUBTEST_22( test_lazy_l2<double>() );
248  CALL_SUBTEST_23( test_lazy_l3<double>() );
249 
250  CALL_SUBTEST_31( test_lazy_l1<std::complex<float> >() );
251  CALL_SUBTEST_32( test_lazy_l2<std::complex<float> >() );
252  CALL_SUBTEST_33( test_lazy_l3<std::complex<float> >() );
253 
254  CALL_SUBTEST_41( test_lazy_l1<std::complex<double> >() );
255  CALL_SUBTEST_42( test_lazy_l2<std::complex<double> >() );
256  CALL_SUBTEST_43( test_lazy_l3<std::complex<double> >() );
257 
258  CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,2,1,Dynamic>() ));
259  CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,3,1,Dynamic>() ));
260  CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,2,1,16>() ));
261 
262  CALL_SUBTEST_6( bug_1311<3>() );
263  CALL_SUBTEST_6( bug_1311<5>() );
264  }
265 
266 #ifdef EIGEN_TEST_PART_6
267  {
268  // test compilation of (outer_product) * vector
269  Vector3f v = Vector3f::Random();
270  VERIFY_IS_APPROX( (v * v.transpose()) * v, (v * v.transpose()).eval() * v);
271  }
272 
273  {
274  // regression test for pull-request #93
278  VERIFY_IS_APPROX(B * A.inverse(), B * A.inverse()[0]);
279  VERIFY_IS_APPROX(A.inverse() * C, A.inverse()[0] * C);
280  }
281 
282  {
284  A.setRandom();
285  C = A;
286  for(int k=0; k<79; ++k)
287  C = C * A;
288  B.noalias() = (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)))
289  * (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)));
290  VERIFY_IS_APPROX(B,C);
291  }
292 #endif
293 }
Matrix3f m
void test_lazy_all_layout(int rows=Rows, int cols=Cols, int depth=Depth)
Matrix< RealScalar, Dynamic, Dynamic > M
Definition: bench_gemm.cpp:38
void test_lazy_l1()
Scalar * b
Definition: benchVecAdd.cpp:17
ArrayXcf v
Definition: Cwise_arg.cpp:1
int n
Rot2 R(Rot2::fromAngle(0.1))
static Cal3_S2 K(500, 500, 0.1, 640/2, 480/2)
void test_linear_but_not_vectorizable()
void test_product_small()
Matrix< SCALARA, Dynamic, Dynamic > A
Definition: bench_gemm.cpp:35
#define N
Definition: gksort.c:12
void bug_1311()
Matrix< SCALARB, Dynamic, Dynamic > B
Definition: bench_gemm.cpp:36
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
#define VERIFY_IS_APPROX(a, b)
static int g_repeat
Definition: main.h:144
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
const mpreal sum(const mpreal tab[], const unsigned long int n, int &status, mp_rnd_t mode=mpreal::get_default_rnd())
Definition: mpreal.h:2381
static const int Cols
Matrix< Scalar, Dynamic, Dynamic > C
Definition: bench_gemm.cpp:37
void test_lazy_l2()
void product1x1()
#define CALL_SUBTEST(FUNC)
Definition: main.h:342
internal::enable_if<!((Rows==1 &&Depth!=1 &&OA==ColMajor)||(Depth==1 &&Rows!=1 &&OA==RowMajor)||(Cols==1 &&Depth!=1 &&OB==RowMajor)||(Depth==1 &&Cols!=1 &&OB==ColMajor)||(Rows==1 &&Cols!=1 &&OC==ColMajor)||(Cols==1 &&Rows!=1 &&OC==RowMajor)), void >::type test_lazy_single(int rows, int cols, int depth)
internal::nested_eval< T, 1 >::type eval(const T &xpr)
const int Dynamic
Definition: Constants.h:21
The matrix class, also used for vectors and row-vectors.
Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > & setRandom(Index size)
void test_lazy_l3()
std::ptrdiff_t j
const TC & ref_prod(TC &C, const TA &A, const TB &B)
void product(const MatrixType &m)
Definition: product.h:20


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:43:33