SparseLU_gemm_kernel.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SPARSELU_GEMM_KERNEL_H
11 #define EIGEN_SPARSELU_GEMM_KERNEL_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 
24 template<typename Scalar>
26 void sparselu_gemm(Index m, Index n, Index d, const Scalar* A, Index lda, const Scalar* B, Index ldb, Scalar* C, Index ldc)
27 {
28  using namespace Eigen::internal;
29 
30  typedef typename packet_traits<Scalar>::type Packet;
31  enum {
32  NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
33  PacketSize = packet_traits<Scalar>::size,
34  PM = 8, // peeling in M
35  RN = 2, // register blocking
36  RK = NumberOfRegisters>=16 ? 4 : 2, // register blocking
37  BM = 4096/sizeof(Scalar), // number of rows of A-C per chunk
38  SM = PM*PacketSize // step along M
39  };
40  Index d_end = (d/RK)*RK; // number of columns of A (rows of B) suitable for full register blocking
41  Index n_end = (n/RN)*RN; // number of columns of B-C suitable for processing RN columns at once
43 
44  eigen_internal_assert(((lda%PacketSize)==0) && ((ldc%PacketSize)==0) && (i0==internal::first_default_aligned(C,m)));
45 
46  // handle the non aligned rows of A and C without any optimization:
47  for(Index i=0; i<i0; ++i)
48  {
49  for(Index j=0; j<n; ++j)
50  {
51  Scalar c = C[i+j*ldc];
52  for(Index k=0; k<d; ++k)
53  c += B[k+j*ldb] * A[i+k*lda];
54  C[i+j*ldc] = c;
55  }
56  }
57  // process the remaining rows per chunk of BM rows
58  for(Index ib=i0; ib<m; ib+=BM)
59  {
60  Index actual_b = std::min<Index>(BM, m-ib); // actual number of rows
61  Index actual_b_end1 = (actual_b/SM)*SM; // actual number of rows suitable for peeling
62  Index actual_b_end2 = (actual_b/PacketSize)*PacketSize; // actual number of rows suitable for vectorization
63 
64  // Let's process two columns of B-C at once
65  for(Index j=0; j<n_end; j+=RN)
66  {
67  const Scalar* Bc0 = B+(j+0)*ldb;
68  const Scalar* Bc1 = B+(j+1)*ldb;
69 
70  for(Index k=0; k<d_end; k+=RK)
71  {
72 
73  // load and expand a RN x RK block of B
74  Packet b00, b10, b20, b30, b01, b11, b21, b31;
75  { b00 = pset1<Packet>(Bc0[0]); }
76  { b10 = pset1<Packet>(Bc0[1]); }
77  if(RK==4) { b20 = pset1<Packet>(Bc0[2]); }
78  if(RK==4) { b30 = pset1<Packet>(Bc0[3]); }
79  { b01 = pset1<Packet>(Bc1[0]); }
80  { b11 = pset1<Packet>(Bc1[1]); }
81  if(RK==4) { b21 = pset1<Packet>(Bc1[2]); }
82  if(RK==4) { b31 = pset1<Packet>(Bc1[3]); }
83 
84  Packet a0, a1, a2, a3, c0, c1, t0, t1;
85 
86  const Scalar* A0 = A+ib+(k+0)*lda;
87  const Scalar* A1 = A+ib+(k+1)*lda;
88  const Scalar* A2 = A+ib+(k+2)*lda;
89  const Scalar* A3 = A+ib+(k+3)*lda;
90 
91  Scalar* C0 = C+ib+(j+0)*ldc;
92  Scalar* C1 = C+ib+(j+1)*ldc;
93 
94  a0 = pload<Packet>(A0);
95  a1 = pload<Packet>(A1);
96  if(RK==4)
97  {
98  a2 = pload<Packet>(A2);
99  a3 = pload<Packet>(A3);
100  }
101  else
102  {
103  // workaround "may be used uninitialized in this function" warning
104  a2 = a3 = a0;
105  }
106 
107 #define KMADD(c, a, b, tmp) {tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);}
108 #define WORK(I) \
109  c0 = pload<Packet>(C0+i+(I)*PacketSize); \
110  c1 = pload<Packet>(C1+i+(I)*PacketSize); \
111  KMADD(c0, a0, b00, t0) \
112  KMADD(c1, a0, b01, t1) \
113  a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \
114  KMADD(c0, a1, b10, t0) \
115  KMADD(c1, a1, b11, t1) \
116  a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \
117  if(RK==4){ KMADD(c0, a2, b20, t0) }\
118  if(RK==4){ KMADD(c1, a2, b21, t1) }\
119  if(RK==4){ a2 = pload<Packet>(A2+i+(I+1)*PacketSize); }\
120  if(RK==4){ KMADD(c0, a3, b30, t0) }\
121  if(RK==4){ KMADD(c1, a3, b31, t1) }\
122  if(RK==4){ a3 = pload<Packet>(A3+i+(I+1)*PacketSize); }\
123  pstore(C0+i+(I)*PacketSize, c0); \
124  pstore(C1+i+(I)*PacketSize, c1)
125 
126  // process rows of A' - C' with aggressive vectorization and peeling
127  for(Index i=0; i<actual_b_end1; i+=PacketSize*8)
128  {
129  EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL1");
130  prefetch((A0+i+(5)*PacketSize));
131  prefetch((A1+i+(5)*PacketSize));
132  if(RK==4) prefetch((A2+i+(5)*PacketSize));
133  if(RK==4) prefetch((A3+i+(5)*PacketSize));
134 
135  WORK(0);
136  WORK(1);
137  WORK(2);
138  WORK(3);
139  WORK(4);
140  WORK(5);
141  WORK(6);
142  WORK(7);
143  }
144  // process the remaining rows with vectorization only
145  for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize)
146  {
147  WORK(0);
148  }
149 #undef WORK
150  // process the remaining rows without vectorization
151  for(Index i=actual_b_end2; i<actual_b; ++i)
152  {
153  if(RK==4)
154  {
155  C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3];
156  C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1]+A2[i]*Bc1[2]+A3[i]*Bc1[3];
157  }
158  else
159  {
160  C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1];
161  C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1];
162  }
163  }
164 
165  Bc0 += RK;
166  Bc1 += RK;
167  } // peeled loop on k
168  } // peeled loop on the columns j
169  // process the last column (we now perform a matrix-vector product)
170  if((n-n_end)>0)
171  {
172  const Scalar* Bc0 = B+(n-1)*ldb;
173 
174  for(Index k=0; k<d_end; k+=RK)
175  {
176 
177  // load and expand a 1 x RK block of B
178  Packet b00, b10, b20, b30;
179  b00 = pset1<Packet>(Bc0[0]);
180  b10 = pset1<Packet>(Bc0[1]);
181  if(RK==4) b20 = pset1<Packet>(Bc0[2]);
182  if(RK==4) b30 = pset1<Packet>(Bc0[3]);
183 
184  Packet a0, a1, a2, a3, c0, t0/*, t1*/;
185 
186  const Scalar* A0 = A+ib+(k+0)*lda;
187  const Scalar* A1 = A+ib+(k+1)*lda;
188  const Scalar* A2 = A+ib+(k+2)*lda;
189  const Scalar* A3 = A+ib+(k+3)*lda;
190 
191  Scalar* C0 = C+ib+(n_end)*ldc;
192 
193  a0 = pload<Packet>(A0);
194  a1 = pload<Packet>(A1);
195  if(RK==4)
196  {
197  a2 = pload<Packet>(A2);
198  a3 = pload<Packet>(A3);
199  }
200  else
201  {
202  // workaround "may be used uninitialized in this function" warning
203  a2 = a3 = a0;
204  }
205 
206 #define WORK(I) \
207  c0 = pload<Packet>(C0+i+(I)*PacketSize); \
208  KMADD(c0, a0, b00, t0) \
209  a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \
210  KMADD(c0, a1, b10, t0) \
211  a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \
212  if(RK==4){ KMADD(c0, a2, b20, t0) }\
213  if(RK==4){ a2 = pload<Packet>(A2+i+(I+1)*PacketSize); }\
214  if(RK==4){ KMADD(c0, a3, b30, t0) }\
215  if(RK==4){ a3 = pload<Packet>(A3+i+(I+1)*PacketSize); }\
216  pstore(C0+i+(I)*PacketSize, c0);
217 
218  // agressive vectorization and peeling
219  for(Index i=0; i<actual_b_end1; i+=PacketSize*8)
220  {
221  EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL2");
222  WORK(0);
223  WORK(1);
224  WORK(2);
225  WORK(3);
226  WORK(4);
227  WORK(5);
228  WORK(6);
229  WORK(7);
230  }
231  // vectorization only
232  for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize)
233  {
234  WORK(0);
235  }
236  // remaining scalars
237  for(Index i=actual_b_end2; i<actual_b; ++i)
238  {
239  if(RK==4)
240  C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3];
241  else
242  C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1];
243  }
244 
245  Bc0 += RK;
246 #undef WORK
247  }
248  }
249 
250  // process the last columns of A, corresponding to the last rows of B
251  Index rd = d-d_end;
252  if(rd>0)
253  {
254  for(Index j=0; j<n; ++j)
255  {
256  enum {
257  Alignment = PacketSize>1 ? Aligned : 0
258  };
259  typedef Map<Matrix<Scalar,Dynamic,1>, Alignment > MapVector;
260  typedef Map<const Matrix<Scalar,Dynamic,1>, Alignment > ConstMapVector;
261  if(rd==1) MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b);
262 
263  else if(rd==2) MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b)
264  + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b);
265 
266  else MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b)
267  + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b)
268  + B[2+d_end+j*ldb] * ConstMapVector(A+(d_end+2)*lda+ib, actual_b);
269  }
270  }
271 
272  } // blocking on the rows of A and C
273 }
274 #undef KMADD
275 
276 } // namespace internal
277 
278 } // namespace Eigen
279 
280 #endif // EIGEN_SPARSELU_GEMM_KERNEL_H
Matrix3f m
internal::packet_traits< Scalar >::type Packet
SCALAR Scalar
Definition: bench_gemm.cpp:33
EIGEN_DONT_INLINE void sparselu_gemm(Index m, Index n, Index d, const Scalar *A, Index lda, const Scalar *B, Index ldb, Scalar *C, Index ldc)
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:94
int n
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
#define EIGEN_ASM_COMMENT(X)
Definition: Macros.h:624
#define WORK(I)
#define EIGEN_DONT_INLINE
Definition: Macros.h:517
static Index first_default_aligned(const DenseBase< Derived > &m)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
* lda
Definition: eigenvalues.cpp:59
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
Matrix< Scalar, Dynamic, Dynamic > C
Definition: bench_gemm.cpp:37
#define eigen_internal_assert(x)
Definition: Macros.h:585
EIGEN_DEVICE_FUNC void prefetch(const Scalar *addr)
std::ptrdiff_t j
static const Key c1


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:44:24