SelfAdjointView.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SELFADJOINTMATRIX_H
11 #define EIGEN_SELFADJOINTMATRIX_H
12 
13 namespace Eigen {
14 
31 namespace internal {
32 template<typename MatrixType, unsigned int UpLo>
33 struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
34 {
38  typedef typename MatrixType::PlainObject FullMatrixType;
39  enum {
40  Mode = UpLo | SelfAdjoint,
41  FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
42  Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits|FlagsLvalueBit)
43  & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)) // FIXME these flags should be preserved
44  };
45 };
46 }
47 
48 
49 template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
50  : public TriangularBase<SelfAdjointView<_MatrixType, UpLo> >
51 {
52  public:
53 
54  typedef _MatrixType MatrixType;
58  typedef MatrixTypeNestedCleaned NestedExpression;
59 
62  typedef typename MatrixType::StorageIndex StorageIndex;
64 
65  enum {
68  TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0)
69  };
70  typedef typename MatrixType::PlainObject PlainObject;
71 
72  EIGEN_DEVICE_FUNC
73  explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
74  {
75  EIGEN_STATIC_ASSERT(UpLo==Lower || UpLo==Upper,SELFADJOINTVIEW_ACCEPTS_UPPER_AND_LOWER_MODE_ONLY);
76  }
77 
78  EIGEN_DEVICE_FUNC
79  inline Index rows() const { return m_matrix.rows(); }
80  EIGEN_DEVICE_FUNC
81  inline Index cols() const { return m_matrix.cols(); }
82  EIGEN_DEVICE_FUNC
83  inline Index outerStride() const { return m_matrix.outerStride(); }
84  EIGEN_DEVICE_FUNC
85  inline Index innerStride() const { return m_matrix.innerStride(); }
86 
90  EIGEN_DEVICE_FUNC
91  inline Scalar coeff(Index row, Index col) const
92  {
93  Base::check_coordinates_internal(row, col);
94  return m_matrix.coeff(row, col);
95  }
96 
100  EIGEN_DEVICE_FUNC
101  inline Scalar& coeffRef(Index row, Index col)
102  {
104  Base::check_coordinates_internal(row, col);
105  return m_matrix.coeffRef(row, col);
106  }
107 
109  EIGEN_DEVICE_FUNC
110  const MatrixTypeNestedCleaned& _expression() const { return m_matrix; }
111 
112  EIGEN_DEVICE_FUNC
113  const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
114  EIGEN_DEVICE_FUNC
115  MatrixTypeNestedCleaned& nestedExpression() { return m_matrix; }
116 
118  template<typename OtherDerived>
119  EIGEN_DEVICE_FUNC
122  {
123  return Product<SelfAdjointView,OtherDerived>(*this, rhs.derived());
124  }
125 
127  template<typename OtherDerived> friend
128  EIGEN_DEVICE_FUNC
131  {
132  return Product<OtherDerived,SelfAdjointView>(lhs.derived(),rhs);
133  }
134 
135  friend EIGEN_DEVICE_FUNC
137  operator*(const Scalar& s, const SelfAdjointView& mat)
138  {
139  return (s*mat.nestedExpression()).template selfadjointView<UpLo>();
140  }
141 
152  template<typename DerivedU, typename DerivedV>
153  EIGEN_DEVICE_FUNC
154  SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, const Scalar& alpha = Scalar(1));
155 
166  template<typename DerivedU>
167  EIGEN_DEVICE_FUNC
168  SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
169 
180  template<unsigned int TriMode>
181  EIGEN_DEVICE_FUNC
182  typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)),
186  {
189  return typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)),
192  }
193 
196  EIGEN_DEVICE_FUNC
197  inline const ConjugateReturnType conjugate() const
198  { return ConjugateReturnType(m_matrix.conjugate()); }
199 
202  EIGEN_DEVICE_FUNC
203  inline const AdjointReturnType adjoint() const
204  { return AdjointReturnType(m_matrix.adjoint()); }
205 
208  EIGEN_DEVICE_FUNC
209  inline TransposeReturnType transpose()
210  {
211  EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
212  typename MatrixType::TransposeReturnType tmp(m_matrix);
213  return TransposeReturnType(tmp);
214  }
215 
218  EIGEN_DEVICE_FUNC
219  inline const ConstTransposeReturnType transpose() const
220  {
221  return ConstTransposeReturnType(m_matrix.transpose());
222  }
223 
229  EIGEN_DEVICE_FUNC
230  typename MatrixType::ConstDiagonalReturnType diagonal() const
231  {
232  return typename MatrixType::ConstDiagonalReturnType(m_matrix);
233  }
234 
236 
237  const LLT<PlainObject, UpLo> llt() const;
238  const LDLT<PlainObject, UpLo> ldlt() const;
239 
241 
246 
247  EIGEN_DEVICE_FUNC
248  EigenvaluesReturnType eigenvalues() const;
249  EIGEN_DEVICE_FUNC
250  RealScalar operatorNorm() const;
251 
252  protected:
253  MatrixTypeNested m_matrix;
254 };
255 
256 
257 // template<typename OtherDerived, typename MatrixType, unsigned int UpLo>
258 // internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >
259 // operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs)
260 // {
261 // return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs);
262 // }
263 
264 // selfadjoint to dense matrix
265 
266 namespace internal {
267 
268 // TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
269 // in the future selfadjoint-ness should be defined by the expression traits
270 // such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
271 template<typename MatrixType, unsigned int Mode>
273 {
276 };
277 
278 template<int UpLo, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version>
279 class triangular_dense_assignment_kernel<UpLo,SelfAdjoint,SetOpposite,DstEvaluatorTypeT,SrcEvaluatorTypeT,Functor,Version>
280  : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version>
281 {
282 protected:
284  typedef typename Base::DstXprType DstXprType;
285  typedef typename Base::SrcXprType SrcXprType;
286  using Base::m_dst;
287  using Base::m_src;
288  using Base::m_functor;
289 public:
290 
293  typedef typename Base::Scalar Scalar;
295 
296 
297  EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
298  : Base(dst, src, func, dstExpr)
299  {}
300 
301  EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col)
302  {
303  eigen_internal_assert(row!=col);
304  Scalar tmp = m_src.coeff(row,col);
305  m_functor.assignCoeff(m_dst.coeffRef(row,col), tmp);
306  m_functor.assignCoeff(m_dst.coeffRef(col,row), numext::conj(tmp));
307  }
308 
309  EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id)
310  {
311  Base::assignCoeff(id,id);
312  }
313 
314  EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index, Index)
315  { eigen_internal_assert(false && "should never be called"); }
316 };
317 
318 } // end namespace internal
319 
320 /***************************************************************************
321 * Implementation of MatrixBase methods
322 ***************************************************************************/
323 
325 template<typename Derived>
326 template<unsigned int UpLo>
329 {
330  return typename ConstSelfAdjointViewReturnType<UpLo>::Type(derived());
331 }
332 
342 template<typename Derived>
343 template<unsigned int UpLo>
346 {
347  return typename SelfAdjointViewReturnType<UpLo>::Type(derived());
348 }
349 
350 } // end namespace Eigen
351 
352 #endif // EIGEN_SELFADJOINTMATRIX_H
EIGEN_DEVICE_FUNC const Product< SelfAdjointView, OtherDerived > operator*(const MatrixBase< OtherDerived > &rhs) const
Robust Cholesky decomposition of a matrix with pivoting.
Definition: LDLT.h:50
Matrix< RealScalar, internal::traits< MatrixType >::ColsAtCompileTime, 1 > EigenvaluesReturnType
friend EIGEN_DEVICE_FUNC const SelfAdjointView< const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar, MatrixType, product), UpLo > operator*(const Scalar &s, const SelfAdjointView &mat)
SCALAR Scalar
Definition: bench_gemm.cpp:33
EIGEN_DEVICE_FUNC Index outerStride() const
Expression of the product of two arbitrary matrices or vectors.
Definition: Product.h:71
MatrixType::StorageIndex StorageIndex
Base class for triangular part in a matrix.
EIGEN_DEVICE_FUNC const MatrixTypeNestedCleaned & _expression() const
const unsigned int DirectAccessBit
Definition: Constants.h:150
ArrayXcf v
Definition: Cwise_arg.cpp:1
const unsigned int LvalueBit
Definition: Constants.h:139
SelfAdjointView< const typename MatrixType::AdjointReturnType, TransposeMode > AdjointReturnType
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
internal::remove_all< typename MatrixType::ConjugateReturnType >::type MatrixConjugateReturnType
MatrixXf MatrixType
MatrixType::PlainObject PlainObject
EIGEN_DEVICE_FUNC const MatrixTypeNestedCleaned & nestedExpression() const
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:150
NumTraits< Scalar >::Real RealScalar
EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType &dstExpr)
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:124
EIGEN_DEVICE_FUNC Scalar coeff(Index row, Index col) const
EIGEN_DEVICE_FUNC TransposeReturnType transpose()
storage_kind_to_evaluator_kind< typename MatrixType::StorageKind >::Kind Kind
Eigen::Index Index
The interface type of indices.
Definition: EigenBase.h:38
EIGEN_DEVICE_FUNC SelfAdjointViewReturnType< UpLo >::Type selfadjointView()
const unsigned int PacketAccessBit
Definition: Constants.h:89
EIGEN_DEVICE_FUNC const AdjointReturnType adjoint() const
EIGEN_DEVICE_FUNC Index innerStride() const
#define EIGEN_STATIC_ASSERT_LVALUE(Derived)
Definition: StaticAssert.h:199
internal::traits< SelfAdjointView >::Scalar Scalar
The type of coefficients in this matrix.
internal::traits< SelfAdjointView >::MatrixTypeNestedCleaned MatrixTypeNestedCleaned
EIGEN_DEVICE_FUNC MatrixTypeNestedCleaned & nestedExpression()
internal::traits< SelfAdjointView >::MatrixTypeNested MatrixTypeNested
TriangularBase< SelfAdjointView > Base
EIGEN_DEVICE_FUNC internal::conditional<(TriMode &(Upper|Lower))==(UpLo &(Upper|Lower)), TriangularView< MatrixType, TriMode >, TriangularView< typename MatrixType::AdjointReturnType, TriMode > >::type triangularView() const
const unsigned int HereditaryBits
Definition: Constants.h:190
m row(1)
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
Definition: LLT.h:56
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
SelfAdjointView< typename MatrixType::TransposeReturnType, TransposeMode > TransposeReturnType
EIGEN_DEVICE_FUNC Index cols() const
ref_selector< MatrixType >::non_const_type MatrixTypeNested
RealScalar alpha
RealScalar s
Expression of a selfadjoint matrix from a triangular part of a dense matrix.
EIGEN_DEVICE_FUNC const ConstTransposeReturnType transpose() const
EIGEN_DEVICE_FUNC SelfAdjointView(MatrixType &matrix)
MatrixTypeNested m_matrix
SelfAdjointView< const MatrixConjugateReturnType, UpLo > ConjugateReturnType
EIGEN_DEVICE_FUNC MatrixType::ConstDiagonalReturnType diagonal() const
EIGEN_DEVICE_FUNC const ConjugateReturnType conjugate() const
Expression of a triangular part in a matrix.
SelfAdjointView< const typename MatrixType::ConstTransposeReturnType, TransposeMode > ConstTransposeReturnType
m col(1)
remove_all< MatrixTypeNested >::type MatrixTypeNestedCleaned
internal::conditional< NumTraits< Scalar >::IsComplex, const CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, const Derived >, const Derived & >::type ConjugateReturnType
EIGEN_DEVICE_FUNC Index rows() const
#define eigen_internal_assert(x)
Definition: Macros.h:585
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
The matrix class, also used for vectors and row-vectors.
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
const unsigned int LinearAccessBit
Definition: Constants.h:125
friend EIGEN_DEVICE_FUNC const Product< OtherDerived, SelfAdjointView > operator*(const MatrixBase< OtherDerived > &lhs, const SelfAdjointView &rhs)
MatrixTypeNestedCleaned NestedExpression
ScalarWithExceptions conj(const ScalarWithExceptions &x)
Definition: exceptions.cpp:74
Definition: pytypes.h:897
EIGEN_DEVICE_FUNC Scalar & coeffRef(Index row, Index col)


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:43:59