47 #ifndef EIGEN_COLAMD_H 48 #define EIGEN_COLAMD_H 60 #define COLAMD_KNOBS 20 63 #define COLAMD_STATS 20 66 #define COLAMD_DENSE_ROW 0 69 #define COLAMD_DENSE_COL 1 72 #define COLAMD_DEFRAG_COUNT 2 75 #define COLAMD_STATUS 3 78 #define COLAMD_INFO1 4 79 #define COLAMD_INFO2 5 80 #define COLAMD_INFO3 6 84 #define COLAMD_OK_BUT_JUMBLED (1) 85 #define COLAMD_ERROR_A_not_present (-1) 86 #define COLAMD_ERROR_p_not_present (-2) 87 #define COLAMD_ERROR_nrow_negative (-3) 88 #define COLAMD_ERROR_ncol_negative (-4) 89 #define COLAMD_ERROR_nnz_negative (-5) 90 #define COLAMD_ERROR_p0_nonzero (-6) 91 #define COLAMD_ERROR_A_too_small (-7) 92 #define COLAMD_ERROR_col_length_negative (-8) 93 #define COLAMD_ERROR_row_index_out_of_bounds (-9) 94 #define COLAMD_ERROR_out_of_memory (-10) 95 #define COLAMD_ERROR_internal_error (-999) 101 #define ONES_COMPLEMENT(r) (-(r)-1) 105 #define COLAMD_EMPTY (-1) 112 #define DEAD_PRINCIPAL (-1) 113 #define DEAD_NON_PRINCIPAL (-2) 116 #define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark) 117 #define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE) 118 #define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE) 119 #define COL_IS_DEAD(c) (Col [c].start < ALIVE) 120 #define COL_IS_ALIVE(c) (Col [c].start >= ALIVE) 121 #define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL) 122 #define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; } 123 #define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; } 124 #define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; } 131 template <
typename IndexType>
165 template <
typename IndexType>
201 template <
typename IndexType>
205 template <
typename IndexType>
210 template <
typename IndexType>
213 template <
typename IndexType>
216 template <
typename IndexType>
219 template <
typename IndexType>
222 template <
typename IndexType>
225 template <
typename IndexType>
228 template <
typename IndexType>
233 #define COLAMD_DEBUG0(params) ; 234 #define COLAMD_DEBUG1(params) ; 235 #define COLAMD_DEBUG2(params) ; 236 #define COLAMD_DEBUG3(params) ; 237 #define COLAMD_DEBUG4(params) ; 239 #define COLAMD_ASSERT(expression) ((void) 0) 256 template <
typename IndexType>
259 if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0)
262 return (2 * (nnz) +
colamd_c (n_col) +
colamd_r (n_row) + (n_col) + ((nnz) / 5));
321 template <
typename IndexType>
322 static bool colamd(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p,
double knobs[COLAMD_KNOBS], IndexType
stats[COLAMD_STATS])
390 COLAMD_DEBUG0 ((
"colamd: number of entries negative %d\n", nnz)) ;
407 knobs = default_knobs ;
414 need = 2*nnz + n_col + Col_size + Row_size ;
422 COLAMD_DEBUG0 ((
"colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
426 Alen -= Col_size + Row_size ;
442 &n_row2, &n_col2, &max_deg) ;
447 n_col2, max_deg, 2*nnz) ;
481 template <
typename IndexType>
482 static IndexType init_rows_cols
507 for (col = 0 ; col < n_col ; col++)
509 Col [
col].start = p [
col] ;
510 Col [
col].length = p [col+1] - p [
col] ;
512 if ((Col [col].
length) < 0)
518 COLAMD_DEBUG0 ((
"colamd: col %d length %d < 0\n", col, Col [col].length)) ;
522 Col [
col].shared1.thickness = 1 ;
523 Col [
col].shared2.score = 0 ;
534 for (row = 0 ; row < n_row ; row++)
536 Row [
row].length = 0 ;
537 Row [
row].shared2.mark = -1 ;
540 for (col = 0 ; col < n_col ; col++)
545 cp_end = &A [p [col+1]] ;
552 if (row < 0 || row >= n_row)
558 COLAMD_DEBUG0 ((
"colamd: row %d col %d out of bounds\n", row, col)) ;
562 if (row <= last_row || Row [row].
shared2.mark == col)
570 COLAMD_DEBUG1 ((
"colamd: row %d col %d unsorted/duplicate\n",row,col));
573 if (Row [row].
shared2.mark != col)
585 Row [
row].shared2.mark =
col ;
595 Row [0].start = p [n_col] ;
596 Row [0].shared1.p = Row [0].start ;
597 Row [0].shared2.mark = -1 ;
598 for (row = 1 ; row < n_row ; row++)
600 Row [
row].start = Row [row-1].start + Row [row-1].length ;
601 Row [
row].shared1.p = Row [
row].start ;
602 Row [
row].shared2.mark = -1 ;
610 for (col = 0 ; col < n_col ; col++)
613 cp_end = &A [p [col+1]] ;
617 if (Row [row].
shared2.mark != col)
619 A [(Row [
row].shared1.p)++] = col ;
620 Row [
row].shared2.mark =
col ;
628 for (col = 0 ; col < n_col ; col++)
631 cp_end = &A [p [col+1]] ;
634 A [(Row [*cp++].shared1.p)++] = col ;
641 for (row = 0 ; row < n_row ; row++)
643 Row [
row].shared2.mark = 0 ;
644 Row [
row].shared1.degree = Row [
row].length ;
651 COLAMD_DEBUG0 ((
"colamd: reconstructing column form, matrix jumbled\n")) ;
661 p [0] = Col [0].start ;
662 for (col = 1 ; col < n_col ; col++)
666 Col [
col].start = Col [col-1].start + Col [col-1].length ;
667 p [
col] = Col [
col].start ;
672 for (row = 0 ; row < n_row ; row++)
674 rp = &A [Row [
row].start] ;
675 rp_end = rp + Row [
row].length ;
678 A [(p [*rp++])++] = row ;
697 template <
typename IndexType>
708 double knobs [COLAMD_KNOBS],
722 IndexType col_length ;
726 IndexType dense_row_count ;
727 IndexType dense_col_count ;
728 IndexType min_score ;
737 COLAMD_DEBUG1 ((
"colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
746 for (c = n_col-1 ; c >= 0 ; c--)
756 COLAMD_DEBUG1 ((
"colamd: null columns killed: %d\n", n_col - n_col2)) ;
761 for (c = n_col-1 ; c >= 0 ; c--)
769 if (deg > dense_col_count)
775 cp_end = cp + Col [
c].length ;
783 COLAMD_DEBUG1 ((
"colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
787 for (r = 0 ; r < n_row ; r++)
791 if (deg > dense_row_count || deg == 0)
803 COLAMD_DEBUG1 ((
"colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
813 for (c = n_col-1 ; c >= 0 ; c--)
823 cp_end = cp + Col [
c].length ;
841 col_length = (IndexType) (new_cp - &A [Col [c].
start]) ;
847 Col [
c].shared2.order = --n_col2 ;
855 Col [
c].length = col_length ;
856 Col [
c].shared2.score =
score ;
859 COLAMD_DEBUG1 ((
"colamd: Dense, null, and newly-null columns killed: %d\n",
871 for (c = 0 ; c <= n_col ; c++)
878 for (c = n_col-1 ; c >= 0 ; c--)
884 c, Col [c].
shared2.score, min_score, n_col)) ;
897 next_col = head [
score] ;
921 *p_max_deg = max_deg ;
934 template <
typename IndexType>
935 static IndexType find_ordering
954 IndexType pivot_col ;
957 IndexType pivot_row ;
960 IndexType pivot_row_start ;
961 IndexType pivot_row_degree ;
962 IndexType pivot_row_length ;
963 IndexType pivot_col_score ;
964 IndexType needed_memory ;
969 IndexType max_score ;
970 IndexType cur_score ;
972 IndexType head_column ;
973 IndexType first_col ;
976 IndexType set_difference ;
977 IndexType min_score ;
978 IndexType col_thickness ;
980 IndexType pivot_col_thickness ;
988 max_mark = INT_MAX - n_col ;
996 for (k = 0 ; k < n_col2 ; )
1007 while (min_score < n_col && head [min_score] ==
COLAMD_EMPTY)
1011 pivot_col = head [min_score] ;
1013 next_col = Col [pivot_col].shared4.degree_next ;
1014 head [min_score] = next_col ;
1024 pivot_col_score = Col [pivot_col].shared2.score ;
1027 Col [pivot_col].shared2.order = k ;
1030 pivot_col_thickness = Col [pivot_col].shared1.thickness ;
1031 k += pivot_col_thickness ;
1036 needed_memory =
numext::mini(pivot_col_score, n_col - k) ;
1037 if (pfree + needed_memory >= Alen)
1051 pivot_row_start = pfree ;
1054 pivot_row_degree = 0 ;
1058 Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
1061 cp = &A [Col [pivot_col].start] ;
1062 cp_end = cp + Col [pivot_col].length ;
1073 rp = &A [Row [
row].start] ;
1074 rp_end = rp + Row [
row].length ;
1080 col_thickness = Col [
col].shared1.thickness ;
1084 Col [
col].shared1.thickness = -col_thickness ;
1088 pivot_row_degree += col_thickness ;
1094 Col [pivot_col].shared1.thickness = pivot_col_thickness ;
1101 cp = &A [Col [pivot_col].start] ;
1102 cp_end = cp + Col [pivot_col].length ;
1113 pivot_row_length = pfree - pivot_row_start ;
1114 if (pivot_row_length > 0)
1117 pivot_row = A [Col [pivot_col].start] ;
1149 COLAMD_DEBUG3 ((
"** Computing set differences phase. **\n")) ;
1155 rp = &A [pivot_row_start] ;
1156 rp_end = rp + pivot_row_length ;
1164 col_thickness = -Col [
col].shared1.thickness ;
1166 Col [
col].shared1.thickness = col_thickness ;
1170 cur_score = Col [
col].shared2.score ;
1171 prev_col = Col [
col].shared3.prev ;
1172 next_col = Col [
col].shared4.degree_next ;
1178 head [cur_score] = next_col ;
1182 Col [prev_col].shared4.degree_next = next_col ;
1186 Col [next_col].shared3.prev = prev_col ;
1191 cp = &A [Col [
col].start] ;
1192 cp_end = cp + Col [
col].length ;
1197 row_mark = Row [
row].shared2.mark ;
1204 set_difference = row_mark - tag_mark ;
1206 if (set_difference < 0)
1209 set_difference = Row [
row].shared1.degree ;
1212 set_difference -= col_thickness ;
1215 if (set_difference == 0)
1223 Row [
row].shared2.mark = set_difference + tag_mark ;
1234 rp = &A [pivot_row_start] ;
1235 rp_end = rp + pivot_row_length ;
1243 cp = &A [Col [
col].start] ;
1246 cp_end = cp + Col [
col].length ;
1255 row_mark = Row [
row].shared2.mark ;
1267 cur_score += row_mark - tag_mark ;
1273 Col [
col].length = (IndexType) (new_cp - &A [Col [col].
start]) ;
1277 if (Col [col].
length == 0)
1279 COLAMD_DEBUG4 ((
"further mass elimination. Col: %d\n", col)) ;
1282 pivot_row_degree -= Col [
col].shared1.thickness ;
1285 Col [
col].shared2.order = k ;
1287 k += Col [
col].shared1.thickness ;
1293 COLAMD_DEBUG4 ((
"Preparing supercol detection for Col: %d.\n", col)) ;
1296 Col [
col].shared2.score = cur_score ;
1301 COLAMD_DEBUG4 ((
" Hash = %d, n_col = %d.\n", hash, n_col)) ;
1304 head_column = head [
hash] ;
1309 first_col = Col [head_column].shared3.headhash ;
1310 Col [head_column].shared3.headhash =
col ;
1315 first_col = - (head_column + 2) ;
1316 head [
hash] = - (col + 2) ;
1318 Col [
col].shared4.hash_next = first_col ;
1321 Col [
col].shared3.hash = (IndexType) hash ;
1340 tag_mark += (max_deg + 1) ;
1341 if (tag_mark >= max_mark)
1352 rp = &A [pivot_row_start] ;
1355 rp_end = rp + pivot_row_length ;
1366 A [Col [
col].start + (Col [
col].length++)] = pivot_row ;
1371 cur_score = Col [
col].shared2.score + pivot_row_degree ;
1376 max_score = n_col - k - Col [
col].shared1.thickness ;
1379 cur_score -= Col [
col].shared1.thickness ;
1386 Col [
col].shared2.score = cur_score ;
1395 next_col = head [cur_score] ;
1396 Col [
col].shared4.degree_next = next_col ;
1400 Col [next_col].shared3.prev =
col ;
1402 head [cur_score] =
col ;
1411 if (pivot_row_degree > 0)
1415 Row [pivot_row].start = pivot_row_start ;
1416 Row [pivot_row].length = (IndexType) (new_rp - &A[pivot_row_start]) ;
1417 Row [pivot_row].shared1.degree = pivot_row_degree ;
1418 Row [pivot_row].shared2.mark = 0 ;
1445 template <
typename IndexType>
1464 for (i = 0 ; i < n_col ; i++)
1507 for (c = 0 ; c < n_col ; c++)
1546 template <
typename IndexType>
1554 IndexType row_start,
1555 IndexType row_length
1571 IndexType head_column ;
1572 IndexType first_col ;
1576 rp = &A [row_start] ;
1577 rp_end = rp + row_length ;
1592 head_column = head [
hash] ;
1599 first_col = - (head_column + 2) ;
1609 length = Col [super_c].
length ;
1616 for (c = Col [super_c].
shared4.hash_next ;
1624 if (Col [c].length != length ||
1632 cp1 = &A [Col [super_c].
start] ;
1633 cp2 = &A [Col [
c].start] ;
1635 for (i = 0 ; i <
length ; i++)
1642 if (*cp1++ != *cp2++)
1659 Col [super_c].shared1.thickness += Col [
c].shared1.thickness ;
1660 Col [
c].shared1.parent = super_c ;
1665 Col [prev_c].shared4.hash_next = Col [
c].shared4.hash_next ;
1697 template <
typename IndexType>
1698 static IndexType garbage_collection
1722 for (c = 0 ; c < n_col ; c++)
1726 psrc = &A [Col [
c].start] ;
1730 Col [
c].start = (IndexType) (pdest - &A [0]) ;
1731 length = Col [
c].length ;
1732 for (j = 0 ; j <
length ; j++)
1740 Col [
c].length = (IndexType) (pdest - &A [Col [c].
start]) ;
1746 for (r = 0 ; r < n_row ; r++)
1750 if (Row [r].length == 0)
1759 psrc = &A [Row [r].start] ;
1760 Row [r].shared2.first_column = *psrc ;
1772 while (psrc < pfree)
1782 *psrc = Row [r].shared2.first_column ;
1787 Row [r].start = (IndexType) (pdest - &A [0]) ;
1788 length = Row [r].length ;
1789 for (j = 0 ; j <
length ; j++)
1797 Row [r].length = (IndexType) (pdest - &A [Row [r].
start]) ;
1806 return ((IndexType) (pdest - &A [0])) ;
1818 template <
typename IndexType>
1819 static inline IndexType clear_mark
1831 for (r = 0 ; r < n_row ; r++)
1835 Row [r].shared2.mark = 0 ;
static void order_children(IndexType n_col, colamd_col< IndexType > Col[], IndexType p[])
#define COLAMD_DEBUG1(params)
#define KILL_NON_PRINCIPAL_COL(c)
#define COLAMD_ERROR_A_not_present
static IndexType clear_mark(IndexType n_row, Colamd_Row< IndexType > Row[])
union internal::Colamd_Row::@562 shared1
#define ROW_IS_MARKED_DEAD(row_mark)
union internal::colamd_col::@560 shared3
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
static IndexType clear_mark(IndexType n_row, Colamd_Row< IndexType > Row[])
#define COLAMD_ERROR_row_index_out_of_bounds
#define COLAMD_ERROR_nnz_negative
#define COLAMD_DEBUG0(params)
union internal::colamd_col::@558 shared1
#define COLAMD_ERROR_nrow_negative
#define COLAMD_DEFRAG_COUNT
static void init_scoring(IndexType n_row, IndexType n_col, Colamd_Row< IndexType > Row[], colamd_col< IndexType > Col[], IndexType A[], IndexType head[], double knobs[COLAMD_KNOBS], IndexType *p_n_row2, IndexType *p_n_col2, IndexType *p_max_deg)
static void detect_super_cols(colamd_col< IndexType > Col[], IndexType A[], IndexType head[], IndexType row_start, IndexType row_length)
#define COLAMD_OK_BUT_JUMBLED
static bool colamd(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[COLAMD_KNOBS], IndexType stats[COLAMD_STATS])
Computes a column ordering using the column approximate minimum degree ordering.
#define COLAMD_DEBUG2(params)
static IndexType find_ordering(IndexType n_row, IndexType n_col, IndexType Alen, Colamd_Row< IndexType > Row[], colamd_col< IndexType > Col[], IndexType A[], IndexType head[], IndexType n_col2, IndexType max_deg, IndexType pfree)
#define COLAMD_ERROR_p0_nonzero
#define COLAMD_ASSERT(expression)
#define COLAMD_ERROR_ncol_negative
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T &x, const T &y)
IndexType colamd_r(IndexType n_row)
#define COLAMD_DEBUG3(params)
static IndexType garbage_collection(IndexType n_row, IndexType n_col, Colamd_Row< IndexType > Row[], colamd_col< IndexType > Col[], IndexType A[], IndexType *pfree)
EIGEN_DEVICE_FUNC SegmentReturnType head(Index n)
This is the const version of head(Index).
static void colamd_set_defaults(double knobs[COLAMD_KNOBS])
set default parameters The use of this routine is optional.
union internal::colamd_col::@561 shared4
IndexType colamd_c(IndexType n_col)
#define COLAMD_ERROR_p_not_present
static void init_scoring(IndexType n_row, IndexType n_col, Colamd_Row< IndexType > Row[], colamd_col< IndexType > Col[], IndexType A[], IndexType head[], double knobs[COLAMD_KNOBS], IndexType *p_n_row2, IndexType *p_n_col2, IndexType *p_max_deg)
static void detect_super_cols(colamd_col< IndexType > Col[], IndexType A[], IndexType head[], IndexType row_start, IndexType row_length)
#define COLAMD_ERROR_A_too_small
#define COL_IS_DEAD_PRINCIPAL(c)
static IndexType init_rows_cols(IndexType n_row, IndexType n_col, Colamd_Row< IndexType > Row[], colamd_col< IndexType > col[], IndexType A[], IndexType p[], IndexType stats[COLAMD_STATS])
union internal::colamd_col::@559 shared2
#define COLAMD_ERROR_col_length_negative
static IndexType init_rows_cols(IndexType n_row, IndexType n_col, Colamd_Row< IndexType > Row[], colamd_col< IndexType > col[], IndexType A[], IndexType p[], IndexType stats[COLAMD_STATS])
#define KILL_PRINCIPAL_COL(c)
static IndexType find_ordering(IndexType n_row, IndexType n_col, IndexType Alen, Colamd_Row< IndexType > Row[], colamd_col< IndexType > Col[], IndexType A[], IndexType head[], IndexType n_col2, IndexType max_deg, IndexType pfree)
#define ONES_COMPLEMENT(r)
IndexType colamd_recommended(IndexType nnz, IndexType n_row, IndexType n_col)
Returns the recommended value of Alen.
static void order_children(IndexType n_col, colamd_col< IndexType > Col[], IndexType p[])
#define COLAMD_DEBUG4(params)
static IndexType garbage_collection(IndexType n_row, IndexType n_col, Colamd_Row< IndexType > Row[], colamd_col< IndexType > Col[], IndexType A[], IndexType *pfree)