#include <kmeans_index.h>
Classes | |
struct | Node |
struct | PointInfo |
Public Types | |
typedef NNIndex< Distance > | BaseClass |
typedef Distance::ResultType | DistanceType |
typedef Distance::ElementType | ElementType |
typedef bool | needs_vector_space_distance |
Public Member Functions | |
void | addPoints (const Matrix< ElementType > &points, float rebuild_threshold=2) |
Incrementally add points to the index. | |
BaseClass * | clone () const |
void | findNeighbors (ResultSet< DistanceType > &result, const ElementType *vec, const SearchParams &searchParams) const |
int | getClusterCenters (Matrix< DistanceType > ¢ers) |
flann_algorithm_t | getType () const |
void | initCenterChooser () |
KMeansIndex (const Matrix< ElementType > &inputData, const IndexParams ¶ms=KMeansIndexParams(), Distance d=Distance()) | |
KMeansIndex (const IndexParams ¶ms=KMeansIndexParams(), Distance d=Distance()) | |
KMeansIndex (const KMeansIndex &other) | |
void | loadIndex (FILE *stream) |
KMeansIndex & | operator= (KMeansIndex other) |
void | saveIndex (FILE *stream) |
template<typename Archive > | |
void | serialize (Archive &ar) |
void | set_cb_index (float index) |
int | usedMemory () const |
virtual | ~KMeansIndex () |
Protected Member Functions | |
void | buildIndexImpl () |
Private Types | |
typedef BranchStruct< NodePtr, DistanceType > | BranchSt |
typedef Node * | NodePtr |
Private Member Functions | |
void | addPointToTree (NodePtr node, size_t index, DistanceType dist_to_pivot) |
void | computeClustering (NodePtr node, int *indices, int indices_length, int branching) |
void | computeNodeStatistics (NodePtr node, const std::vector< int > &indices) |
void | copyTree (NodePtr &dst, const NodePtr &src) |
int | exploreNodeBranches (NodePtr node, const ElementType *q, Heap< BranchSt > *heap) const |
template<bool with_removed> | |
void | findExactNN (NodePtr node, ResultSet< DistanceType > &result, const ElementType *vec) const |
template<bool with_removed> | |
void | findNeighborsWithRemoved (ResultSet< DistanceType > &result, const ElementType *vec, const SearchParams &searchParams) const |
template<bool with_removed> | |
void | findNN (NodePtr node, ResultSet< DistanceType > &result, const ElementType *vec, int &checks, int maxChecks, Heap< BranchSt > *heap) const |
void | freeIndex () |
void | getCenterOrdering (NodePtr node, const ElementType *q, std::vector< int > &sort_indices) const |
DistanceType | getDistanceToBorder (DistanceType *p, DistanceType *c, DistanceType *q) const |
int | getMinVarianceClusters (NodePtr root, std::vector< NodePtr > &clusters, int clusters_length, DistanceType &varianceValue) const |
void | swap (KMeansIndex &other) |
Private Attributes | |
int | branching_ |
float | cb_index_ |
flann_centers_init_t | centers_init_ |
CenterChooser< Distance > * | chooseCenters_ |
int | iterations_ |
int | memoryCounter_ |
PooledAllocator | pool_ |
NodePtr | root_ |
Hierarchical kmeans index
Contains a tree constructed through a hierarchical kmeans clustering and other information for indexing a set of points for nearest-neighbour matching.
Definition at line 83 of file kmeans_index.h.
typedef NNIndex<Distance> rtflann::KMeansIndex< Distance >::BaseClass |
Definition at line 89 of file kmeans_index.h.
typedef BranchStruct<NodePtr, DistanceType> rtflann::KMeansIndex< Distance >::BranchSt [private] |
Alias definition for a nicer syntax.
Definition at line 454 of file kmeans_index.h.
typedef Distance::ResultType rtflann::KMeansIndex< Distance >::DistanceType |
Reimplemented from rtflann::NNIndex< Distance >.
Definition at line 87 of file kmeans_index.h.
typedef Distance::ElementType rtflann::KMeansIndex< Distance >::ElementType |
Reimplemented from rtflann::NNIndex< Distance >.
Definition at line 86 of file kmeans_index.h.
typedef bool rtflann::KMeansIndex< Distance >::needs_vector_space_distance |
Definition at line 91 of file kmeans_index.h.
typedef Node* rtflann::KMeansIndex< Distance >::NodePtr [private] |
Definition at line 449 of file kmeans_index.h.
rtflann::KMeansIndex< Distance >::KMeansIndex | ( | const Matrix< ElementType > & | inputData, |
const IndexParams & | params = KMeansIndexParams() , |
||
Distance | d = Distance() |
||
) | [inline] |
Index constructor
Params: inputData = dataset with the input features params = parameters passed to the hierarchical k-means algorithm
Definition at line 107 of file kmeans_index.h.
rtflann::KMeansIndex< Distance >::KMeansIndex | ( | const IndexParams & | params = KMeansIndexParams() , |
Distance | d = Distance() |
||
) | [inline] |
Index constructor
Params: inputData = dataset with the input features params = parameters passed to the hierarchical k-means algorithm
Definition at line 131 of file kmeans_index.h.
rtflann::KMeansIndex< Distance >::KMeansIndex | ( | const KMeansIndex< Distance > & | other | ) | [inline] |
Definition at line 146 of file kmeans_index.h.
virtual rtflann::KMeansIndex< Distance >::~KMeansIndex | ( | ) | [inline, virtual] |
Index destructor.
Release the memory used by the index.
Definition at line 187 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::addPoints | ( | const Matrix< ElementType > & | points, |
float | rebuild_threshold = 2 |
||
) | [inline, virtual] |
Incrementally add points to the index.
points | Matrix with points to be added |
rebuild_threshold |
Reimplemented from rtflann::NNIndex< Distance >.
Definition at line 215 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::addPointToTree | ( | NodePtr | node, |
size_t | index, | ||
DistanceType | dist_to_pivot | ||
) | [inline, private] |
Definition at line 969 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::buildIndexImpl | ( | ) | [inline, protected, virtual] |
Builds the index
Implements rtflann::NNIndex< Distance >.
Definition at line 329 of file kmeans_index.h.
BaseClass* rtflann::KMeansIndex< Distance >::clone | ( | ) | const [inline, virtual] |
Implements rtflann::NNIndex< Distance >.
Definition at line 193 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::computeClustering | ( | NodePtr | node, |
int * | indices, | ||
int | indices_length, | ||
int | branching | ||
) | [inline, private] |
The method responsible with actually doing the recursive hierarchical clustering
Params: node = the node to cluster indices = indices of the points belonging to the current node branching = the branching factor to use in the clustering
TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
Definition at line 542 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::computeNodeStatistics | ( | NodePtr | node, |
const std::vector< int > & | indices | ||
) | [inline, private] |
Computes the statistics of a node (mean, radius, variance).
Params: node = the node to use indices = the indices of the points belonging to the node
Definition at line 495 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::copyTree | ( | NodePtr & | dst, |
const NodePtr & | src | ||
) | [inline, private] |
Definition at line 467 of file kmeans_index.h.
int rtflann::KMeansIndex< Distance >::exploreNodeBranches | ( | NodePtr | node, |
const ElementType * | q, | ||
Heap< BranchSt > * | heap | ||
) | const [inline, private] |
Helper function that computes the nearest childs of a node to a given query point. Params: node = the node q = the query point distances = array with the distances to each child node. Returns:
Definition at line 802 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::findExactNN | ( | NodePtr | node, |
ResultSet< DistanceType > & | result, | ||
const ElementType * | vec | ||
) | const [inline, private] |
Function the performs exact nearest neighbor search by traversing the entire tree.
Definition at line 835 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::findNeighbors | ( | ResultSet< DistanceType > & | result, |
const ElementType * | vec, | ||
const SearchParams & | searchParams | ||
) | const [inline, virtual] |
Find set of nearest neighbors to vec. Their indices are stored inside the result object.
Params: result = the result object in which the indices of the nearest-neighbors are stored vec = the vector for which to search the nearest neighbors searchParams = parameters that influence the search algorithm (checks, cb_index)
Implements rtflann::NNIndex< Distance >.
Definition at line 283 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::findNeighborsWithRemoved | ( | ResultSet< DistanceType > & | result, |
const ElementType * | vec, | ||
const SearchParams & | searchParams | ||
) | const [inline, private] |
Definition at line 715 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::findNN | ( | NodePtr | node, |
ResultSet< DistanceType > & | result, | ||
const ElementType * | vec, | ||
int & | checks, | ||
int | maxChecks, | ||
Heap< BranchSt > * | heap | ||
) | const [inline, private] |
Performs one descent in the hierarchical k-means tree. The branches not visited are stored in a priority queue.
Params: node = node to explore result = container for the k-nearest neighbors found vec = query points checks = how many points in the dataset have been checked so far maxChecks = maximum dataset points to checks
Definition at line 755 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::freeIndex | ( | ) | [inline, private, virtual] |
Helper function
Implements rtflann::NNIndex< Distance >.
Definition at line 460 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::getCenterOrdering | ( | NodePtr | node, |
const ElementType * | q, | ||
std::vector< int > & | sort_indices | ||
) | const [inline, private] |
Helper function.
I computes the order in which to traverse the child nodes of a particular node.
Definition at line 880 of file kmeans_index.h.
int rtflann::KMeansIndex< Distance >::getClusterCenters | ( | Matrix< DistanceType > & | centers | ) | [inline] |
Clustering function that takes a cut in the hierarchical k-means tree and return the clusters centers of that clustering. Params: numClusters = number of clusters to have in the clustering computed Returns: number of cluster centers
Definition at line 301 of file kmeans_index.h.
DistanceType rtflann::KMeansIndex< Distance >::getDistanceToBorder | ( | DistanceType * | p, |
DistanceType * | c, | ||
DistanceType * | q | ||
) | const [inline, private] |
Method that computes the squared distance from the query point q from inside region with center c to the border between this region and the region with center p
Definition at line 902 of file kmeans_index.h.
int rtflann::KMeansIndex< Distance >::getMinVarianceClusters | ( | NodePtr | root, |
std::vector< NodePtr > & | clusters, | ||
int | clusters_length, | ||
DistanceType & | varianceValue | ||
) | const [inline, private] |
Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize the overall variance of the clustering. Params: root = root node clusters = array with clusters centers (return value) varianceValue = variance of the clustering (return value) Returns:
Definition at line 926 of file kmeans_index.h.
flann_algorithm_t rtflann::KMeansIndex< Distance >::getType | ( | ) | const [inline, virtual] |
Implements rtflann::IndexBase.
Definition at line 95 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::initCenterChooser | ( | ) | [inline] |
Definition at line 165 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::loadIndex | ( | FILE * | stream | ) | [inline, virtual] |
Implements rtflann::IndexBase.
Definition at line 266 of file kmeans_index.h.
KMeansIndex& rtflann::KMeansIndex< Distance >::operator= | ( | KMeansIndex< Distance > | other | ) | [inline] |
Definition at line 158 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::saveIndex | ( | FILE * | stream | ) | [inline, virtual] |
Implements rtflann::IndexBase.
Definition at line 260 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::serialize | ( | Archive & | ar | ) | [inline] |
Reimplemented from rtflann::NNIndex< Distance >.
Definition at line 234 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::set_cb_index | ( | float | index | ) | [inline] |
Definition at line 199 of file kmeans_index.h.
void rtflann::KMeansIndex< Distance >::swap | ( | KMeansIndex< Distance > & | other | ) | [inline, private] |
Definition at line 1010 of file kmeans_index.h.
int rtflann::KMeansIndex< Distance >::usedMemory | ( | ) | const [inline, virtual] |
Computes the inde memory usage Returns: memory used by the index
Implements rtflann::IndexBase.
Definition at line 208 of file kmeans_index.h.
int rtflann::KMeansIndex< Distance >::branching_ [private] |
The branching factor used in the hierarchical k-means clustering
Definition at line 1025 of file kmeans_index.h.
float rtflann::KMeansIndex< Distance >::cb_index_ [private] |
Cluster border index. This is used in the tree search phase when determining the closest cluster to explore next. A zero value takes into account only the cluster centres, a value greater then zero also take into account the size of the cluster.
Definition at line 1039 of file kmeans_index.h.
flann_centers_init_t rtflann::KMeansIndex< Distance >::centers_init_ [private] |
Algorithm for choosing the cluster centers
Definition at line 1031 of file kmeans_index.h.
CenterChooser<Distance>* rtflann::KMeansIndex< Distance >::chooseCenters_ [private] |
Algorithm used to choose initial centers
Definition at line 1059 of file kmeans_index.h.
int rtflann::KMeansIndex< Distance >::iterations_ [private] |
Maximum number of iterations to use when performing k-means clustering
Definition at line 1028 of file kmeans_index.h.
int rtflann::KMeansIndex< Distance >::memoryCounter_ [private] |
Memory occupied by the index.
Definition at line 1054 of file kmeans_index.h.
PooledAllocator rtflann::KMeansIndex< Distance >::pool_ [private] |
Pooled memory allocator.
Definition at line 1049 of file kmeans_index.h.
NodePtr rtflann::KMeansIndex< Distance >::root_ [private] |
The root node in the tree.
Definition at line 1044 of file kmeans_index.h.