GeodeticCoords.cpp
Go to the documentation of this file.
00001 /*
00002 Copyright (c) 2010-2016, Mathieu Labbe - IntRoLab - Universite de Sherbrooke
00003 All rights reserved.
00004 
00005 Redistribution and use in source and binary forms, with or without
00006 modification, are permitted provided that the following conditions are met:
00007     * Redistributions of source code must retain the above copyright
00008       notice, this list of conditions and the following disclaimer.
00009     * Redistributions in binary form must reproduce the above copyright
00010       notice, this list of conditions and the following disclaimer in the
00011       documentation and/or other materials provided with the distribution.
00012     * Neither the name of the Universite de Sherbrooke nor the
00013       names of its contributors may be used to endorse or promote products
00014       derived from this software without specific prior written permission.
00015 
00016 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
00017 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
00018 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
00019 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
00020 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
00021 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00022 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
00023 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
00024 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00025 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00026 */
00027 
00028 /*
00029  * The methods in this file were modified from the originals of the MRPT toolkit (see notice below):
00030  * https://github.com/MRPT/mrpt/blob/master/libs/topography/src/conversions.cpp
00031  */
00032 
00033 /* +---------------------------------------------------------------------------+
00034    |                     Mobile Robot Programming Toolkit (MRPT)               |
00035    |                          http://www.mrpt.org/                             |
00036    |                                                                           |
00037    | Copyright (c) 2005-2016, Individual contributors, see AUTHORS file        |
00038    | See: http://www.mrpt.org/Authors - All rights reserved.                   |
00039    | Released under BSD License. See details in http://www.mrpt.org/License    |
00040    +---------------------------------------------------------------------------+ */
00041 
00042 
00043 #include "rtabmap/core/GeodeticCoords.h"
00044 
00045 #include <cmath>
00046 #ifndef M_PI
00047 #define M_PI       3.14159265358979323846
00048 #endif
00049 
00050 namespace rtabmap {
00051 
00052 
00053 inline double DEG2RAD(const double x) { return x*M_PI/180.0;}
00054 inline double square(const double & value) {return value*value;}
00055 
00056 //*---------------------------------------------------------------
00057 //                      geodeticToGeocentric_WGS84
00058 // ---------------------------------------------------------------*/
00059 cv::Point3d GeodeticCoords::toGeocentric_WGS84() const
00060 {
00061         // --------------------------------------------------------------------
00062         // See: http://en.wikipedia.org/wiki/Reference_ellipsoid
00063         //  Constants are for WGS84
00064         // --------------------------------------------------------------------
00065 
00066         static const double a = 6378137;                // Semi-major axis of the Earth (meters)
00067         static const double b = 6356752.3142;   // Semi-minor axis:
00068 
00069         static const double ae = acos(b/a);     // eccentricity:
00070         static const double cos2_ae_earth =  square(cos(ae)); // The cos^2 of the angular eccentricity of the Earth: // 0.993305619995739L;
00071         static const double sin2_ae_earth = square(sin(ae));  // The sin^2 of the angular eccentricity of the Earth: // 0.006694380004261L;
00072 
00073         const double lon  = DEG2RAD( double(this->longitude()) );
00074         const double lat  = DEG2RAD( double(this->latitude()) );
00075 
00076         // The radius of curvature in the prime vertical:
00077         const double N = a / std::sqrt( 1.0 - sin2_ae_earth*square( sin(lat) ) );
00078 
00079         // Generate 3D point:
00080         cv::Point3d out;
00081         out.x = (N+this->altitude())*cos(lat)*cos(lon);
00082         out.y = (N+this->altitude())*cos(lat)*sin(lon);
00083         out.z = (cos2_ae_earth*N+this->altitude())*sin(lat);
00084 
00085         return out;
00086 }
00087 
00088 
00089 /*---------------------------------------------------------------
00090                                 geodeticToENU_WGS84
00091  ---------------------------------------------------------------*/
00092 cv::Point3d GeodeticCoords::toENU_WGS84(const GeodeticCoords &origin) const
00093 {
00094         // --------------------------------------------------------------------
00095         //  Explanation: We compute the earth-centric coordinates first,
00096         //    then make a system transformation to local XYZ coordinates
00097         //    using a system of three orthogonal vectors as local reference.
00098         //
00099         // See: http://en.wikipedia.org/wiki/Reference_ellipsoid
00100         // (JLBC 21/DEC/2006)  (Fixed: JLBC 9/JUL/2008)
00101         // - Oct/2013, Emilio Sanjurjo: Fixed UP vector pointing exactly normal to ellipsoid surface.
00102         // --------------------------------------------------------------------
00103         // Generate 3D point:
00104         cv::Point3d     P_geocentric = this->toGeocentric_WGS84();
00105 
00106         // Generate reference 3D point:
00107         cv::Point3d P_geocentric_ref = origin.toGeocentric_WGS84();
00108 
00109         const double clat = cos(DEG2RAD(origin.latitude())), slat = sin(DEG2RAD(origin.latitude()));
00110         const double clon = cos(DEG2RAD(origin.longitude())), slon = sin(DEG2RAD(origin.longitude()));
00111 
00112         // Compute the resulting relative coordinates:
00113         // For using smaller numbers:
00114         P_geocentric -= P_geocentric_ref;
00115 
00116         // Optimized calculation: Local transformed coordinates of P_geo(x,y,z)
00117         //   after rotation given by the transposed rotation matrix from ENU -> ECEF.
00118         cv::Point3d out;
00119         out.x = -slon*P_geocentric.x + clon*P_geocentric.y;
00120         out.y = -clon*slat*P_geocentric.x -slon*slat*P_geocentric.y + clat*P_geocentric.z;
00121         out.z = clon*clat*P_geocentric.x + slon*clat*P_geocentric.y +slat*P_geocentric.z;
00122 
00123         return out;
00124 }
00125 
00126 GeodeticCoords::GeodeticCoords() :
00127                 latitude_(0.0),
00128                 longitude_(0.0),
00129                 altitude_(0.0)
00130 {
00131 
00132 }
00133 GeodeticCoords::GeodeticCoords(double latitude, double longitude, double altitude) :
00134                 latitude_(latitude),
00135                 longitude_(longitude),
00136                 altitude_(altitude)
00137 {
00138 
00139 }
00140 
00141 }


rtabmap
Author(s): Mathieu Labbe
autogenerated on Sat Jul 23 2016 11:44:16