00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN2_SVD_H
00011 #define EIGEN2_SVD_H
00012
00013 namespace Eigen {
00014
00030 template<typename MatrixType> class SVD
00031 {
00032 private:
00033 typedef typename MatrixType::Scalar Scalar;
00034 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
00035
00036 enum {
00037 PacketSize = internal::packet_traits<Scalar>::size,
00038 AlignmentMask = int(PacketSize)-1,
00039 MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
00040 };
00041
00042 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
00043 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
00044
00045 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
00046 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
00047 typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
00048
00049 public:
00050
00051 SVD() {}
00052
00053 SVD(const MatrixType& matrix)
00054 : m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())),
00055 m_matV(matrix.cols(),matrix.cols()),
00056 m_sigma((std::min)(matrix.rows(),matrix.cols()))
00057 {
00058 compute(matrix);
00059 }
00060
00061 template<typename OtherDerived, typename ResultType>
00062 bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
00063
00064 const MatrixUType& matrixU() const { return m_matU; }
00065 const SingularValuesType& singularValues() const { return m_sigma; }
00066 const MatrixVType& matrixV() const { return m_matV; }
00067
00068 void compute(const MatrixType& matrix);
00069 SVD& sort();
00070
00071 template<typename UnitaryType, typename PositiveType>
00072 void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const;
00073 template<typename PositiveType, typename UnitaryType>
00074 void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const;
00075 template<typename RotationType, typename ScalingType>
00076 void computeRotationScaling(RotationType *unitary, ScalingType *positive) const;
00077 template<typename ScalingType, typename RotationType>
00078 void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
00079
00080 protected:
00082 MatrixUType m_matU;
00084 MatrixVType m_matV;
00086 SingularValuesType m_sigma;
00087 };
00088
00093 template<typename MatrixType>
00094 void SVD<MatrixType>::compute(const MatrixType& matrix)
00095 {
00096 const int m = matrix.rows();
00097 const int n = matrix.cols();
00098 const int nu = (std::min)(m,n);
00099 ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!");
00100 ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices");
00101
00102 m_matU.resize(m, nu);
00103 m_matU.setZero();
00104 m_sigma.resize((std::min)(m,n));
00105 m_matV.resize(n,n);
00106
00107 RowVector e(n);
00108 ColVector work(m);
00109 MatrixType matA(matrix);
00110 const bool wantu = true;
00111 const bool wantv = true;
00112 int i=0, j=0, k=0;
00113
00114
00115
00116 int nct = (std::min)(m-1,n);
00117 int nrt = (std::max)(0,(std::min)(n-2,m));
00118 for (k = 0; k < (std::max)(nct,nrt); ++k)
00119 {
00120 if (k < nct)
00121 {
00122
00123
00124 m_sigma[k] = matA.col(k).end(m-k).norm();
00125 if (m_sigma[k] != 0.0)
00126 {
00127 if (matA(k,k) < 0.0)
00128 m_sigma[k] = -m_sigma[k];
00129 matA.col(k).end(m-k) /= m_sigma[k];
00130 matA(k,k) += 1.0;
00131 }
00132 m_sigma[k] = -m_sigma[k];
00133 }
00134
00135 for (j = k+1; j < n; ++j)
00136 {
00137 if ((k < nct) && (m_sigma[k] != 0.0))
00138 {
00139
00140 Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k));
00141 t = -t/matA(k,k);
00142 matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
00143 }
00144
00145
00146
00147 e[j] = matA(k,j);
00148 }
00149
00150
00151 if (wantu & (k < nct))
00152 m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
00153
00154 if (k < nrt)
00155 {
00156
00157
00158 e[k] = e.end(n-k-1).norm();
00159 if (e[k] != 0.0)
00160 {
00161 if (e[k+1] < 0.0)
00162 e[k] = -e[k];
00163 e.end(n-k-1) /= e[k];
00164 e[k+1] += 1.0;
00165 }
00166 e[k] = -e[k];
00167 if ((k+1 < m) & (e[k] != 0.0))
00168 {
00169
00170 work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
00171 for (j = k+1; j < n; ++j)
00172 matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
00173 }
00174
00175
00176 if (wantv)
00177 m_matV.col(k).end(n-k-1) = e.end(n-k-1);
00178 }
00179 }
00180
00181
00182
00183 int p = (std::min)(n,m+1);
00184 if (nct < n)
00185 m_sigma[nct] = matA(nct,nct);
00186 if (m < p)
00187 m_sigma[p-1] = 0.0;
00188 if (nrt+1 < p)
00189 e[nrt] = matA(nrt,p-1);
00190 e[p-1] = 0.0;
00191
00192
00193 if (wantu)
00194 {
00195 for (j = nct; j < nu; ++j)
00196 {
00197 m_matU.col(j).setZero();
00198 m_matU(j,j) = 1.0;
00199 }
00200 for (k = nct-1; k >= 0; k--)
00201 {
00202 if (m_sigma[k] != 0.0)
00203 {
00204 for (j = k+1; j < nu; ++j)
00205 {
00206 Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k));
00207 t = -t/m_matU(k,k);
00208 m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
00209 }
00210 m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
00211 m_matU(k,k) = Scalar(1) + m_matU(k,k);
00212 if (k-1>0)
00213 m_matU.col(k).start(k-1).setZero();
00214 }
00215 else
00216 {
00217 m_matU.col(k).setZero();
00218 m_matU(k,k) = 1.0;
00219 }
00220 }
00221 }
00222
00223
00224 if (wantv)
00225 {
00226 for (k = n-1; k >= 0; k--)
00227 {
00228 if ((k < nrt) & (e[k] != 0.0))
00229 {
00230 for (j = k+1; j < nu; ++j)
00231 {
00232 Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1));
00233 t = -t/m_matV(k+1,k);
00234 m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
00235 }
00236 }
00237 m_matV.col(k).setZero();
00238 m_matV(k,k) = 1.0;
00239 }
00240 }
00241
00242
00243 int pp = p-1;
00244 int iter = 0;
00245 Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
00246 while (p > 0)
00247 {
00248 int k=0;
00249 int kase=0;
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263 for (k = p-2; k >= -1; --k)
00264 {
00265 if (k == -1)
00266 break;
00267 if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
00268 {
00269 e[k] = 0.0;
00270 break;
00271 }
00272 }
00273 if (k == p-2)
00274 {
00275 kase = 4;
00276 }
00277 else
00278 {
00279 int ks;
00280 for (ks = p-1; ks >= k; --ks)
00281 {
00282 if (ks == k)
00283 break;
00284 Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
00285 if (ei_abs(m_sigma[ks]) <= eps*t)
00286 {
00287 m_sigma[ks] = 0.0;
00288 break;
00289 }
00290 }
00291 if (ks == k)
00292 {
00293 kase = 3;
00294 }
00295 else if (ks == p-1)
00296 {
00297 kase = 1;
00298 }
00299 else
00300 {
00301 kase = 2;
00302 k = ks;
00303 }
00304 }
00305 ++k;
00306
00307
00308 switch (kase)
00309 {
00310
00311
00312 case 1:
00313 {
00314 Scalar f(e[p-2]);
00315 e[p-2] = 0.0;
00316 for (j = p-2; j >= k; --j)
00317 {
00318 Scalar t(numext::hypot(m_sigma[j],f));
00319 Scalar cs(m_sigma[j]/t);
00320 Scalar sn(f/t);
00321 m_sigma[j] = t;
00322 if (j != k)
00323 {
00324 f = -sn*e[j-1];
00325 e[j-1] = cs*e[j-1];
00326 }
00327 if (wantv)
00328 {
00329 for (i = 0; i < n; ++i)
00330 {
00331 t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
00332 m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
00333 m_matV(i,j) = t;
00334 }
00335 }
00336 }
00337 }
00338 break;
00339
00340
00341 case 2:
00342 {
00343 Scalar f(e[k-1]);
00344 e[k-1] = 0.0;
00345 for (j = k; j < p; ++j)
00346 {
00347 Scalar t(numext::hypot(m_sigma[j],f));
00348 Scalar cs( m_sigma[j]/t);
00349 Scalar sn(f/t);
00350 m_sigma[j] = t;
00351 f = -sn*e[j];
00352 e[j] = cs*e[j];
00353 if (wantu)
00354 {
00355 for (i = 0; i < m; ++i)
00356 {
00357 t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
00358 m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
00359 m_matU(i,j) = t;
00360 }
00361 }
00362 }
00363 }
00364 break;
00365
00366
00367 case 3:
00368 {
00369
00370 Scalar scale = (std::max)((std::max)((std::max)((std::max)(
00371 ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
00372 ei_abs(m_sigma[k])),ei_abs(e[k]));
00373 Scalar sp = m_sigma[p-1]/scale;
00374 Scalar spm1 = m_sigma[p-2]/scale;
00375 Scalar epm1 = e[p-2]/scale;
00376 Scalar sk = m_sigma[k]/scale;
00377 Scalar ek = e[k]/scale;
00378 Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
00379 Scalar c = (sp*epm1)*(sp*epm1);
00380 Scalar shift(0);
00381 if ((b != 0.0) || (c != 0.0))
00382 {
00383 shift = ei_sqrt(b*b + c);
00384 if (b < 0.0)
00385 shift = -shift;
00386 shift = c/(b + shift);
00387 }
00388 Scalar f = (sk + sp)*(sk - sp) + shift;
00389 Scalar g = sk*ek;
00390
00391
00392
00393 for (j = k; j < p-1; ++j)
00394 {
00395 Scalar t = numext::hypot(f,g);
00396 Scalar cs = f/t;
00397 Scalar sn = g/t;
00398 if (j != k)
00399 e[j-1] = t;
00400 f = cs*m_sigma[j] + sn*e[j];
00401 e[j] = cs*e[j] - sn*m_sigma[j];
00402 g = sn*m_sigma[j+1];
00403 m_sigma[j+1] = cs*m_sigma[j+1];
00404 if (wantv)
00405 {
00406 for (i = 0; i < n; ++i)
00407 {
00408 t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
00409 m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
00410 m_matV(i,j) = t;
00411 }
00412 }
00413 t = numext::hypot(f,g);
00414 cs = f/t;
00415 sn = g/t;
00416 m_sigma[j] = t;
00417 f = cs*e[j] + sn*m_sigma[j+1];
00418 m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
00419 g = sn*e[j+1];
00420 e[j+1] = cs*e[j+1];
00421 if (wantu && (j < m-1))
00422 {
00423 for (i = 0; i < m; ++i)
00424 {
00425 t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
00426 m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
00427 m_matU(i,j) = t;
00428 }
00429 }
00430 }
00431 e[p-2] = f;
00432 iter = iter + 1;
00433 }
00434 break;
00435
00436
00437 case 4:
00438 {
00439
00440 if (m_sigma[k] <= 0.0)
00441 {
00442 m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
00443 if (wantv)
00444 m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
00445 }
00446
00447
00448 while (k < pp)
00449 {
00450 if (m_sigma[k] >= m_sigma[k+1])
00451 break;
00452 Scalar t = m_sigma[k];
00453 m_sigma[k] = m_sigma[k+1];
00454 m_sigma[k+1] = t;
00455 if (wantv && (k < n-1))
00456 m_matV.col(k).swap(m_matV.col(k+1));
00457 if (wantu && (k < m-1))
00458 m_matU.col(k).swap(m_matU.col(k+1));
00459 ++k;
00460 }
00461 iter = 0;
00462 p--;
00463 }
00464 break;
00465 }
00466 }
00467 }
00468
00469 template<typename MatrixType>
00470 SVD<MatrixType>& SVD<MatrixType>::sort()
00471 {
00472 int mu = m_matU.rows();
00473 int mv = m_matV.rows();
00474 int n = m_matU.cols();
00475
00476 for (int i=0; i<n; ++i)
00477 {
00478 int k = i;
00479 Scalar p = m_sigma.coeff(i);
00480
00481 for (int j=i+1; j<n; ++j)
00482 {
00483 if (m_sigma.coeff(j) > p)
00484 {
00485 k = j;
00486 p = m_sigma.coeff(j);
00487 }
00488 }
00489 if (k != i)
00490 {
00491 m_sigma.coeffRef(k) = m_sigma.coeff(i);
00492 m_sigma.coeffRef(i) = p;
00493
00494 int j = mu;
00495 for(int s=0; j!=0; ++s, --j)
00496 std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
00497
00498 j = mv;
00499 for (int s=0; j!=0; ++s, --j)
00500 std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
00501 }
00502 }
00503 return *this;
00504 }
00505
00511 template<typename MatrixType>
00512 template<typename OtherDerived, typename ResultType>
00513 bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
00514 {
00515 ei_assert(b.rows() == m_matU.rows());
00516
00517 Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
00518 for (int j=0; j<b.cols(); ++j)
00519 {
00520 Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
00521
00522 for (int i = 0; i <m_matU.cols(); ++i)
00523 {
00524 Scalar si = m_sigma.coeff(i);
00525 if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
00526 aux.coeffRef(i) = 0;
00527 else
00528 aux.coeffRef(i) /= si;
00529 }
00530
00531 result->col(j) = m_matV * aux;
00532 }
00533 return true;
00534 }
00535
00544 template<typename MatrixType>
00545 template<typename UnitaryType, typename PositiveType>
00546 void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
00547 PositiveType *positive) const
00548 {
00549 ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
00550 if(unitary) *unitary = m_matU * m_matV.adjoint();
00551 if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
00552 }
00553
00562 template<typename MatrixType>
00563 template<typename UnitaryType, typename PositiveType>
00564 void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
00565 PositiveType *unitary) const
00566 {
00567 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
00568 if(unitary) *unitary = m_matU * m_matV.adjoint();
00569 if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
00570 }
00571
00581 template<typename MatrixType>
00582 template<typename RotationType, typename ScalingType>
00583 void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
00584 {
00585 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
00586 Scalar x = (m_matU * m_matV.adjoint()).determinant();
00587 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
00588 sv.coeffRef(0) *= x;
00589 if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
00590 if(rotation)
00591 {
00592 MatrixType m(m_matU);
00593 m.col(0) /= x;
00594 rotation->lazyAssign(m * m_matV.adjoint());
00595 }
00596 }
00597
00607 template<typename MatrixType>
00608 template<typename ScalingType, typename RotationType>
00609 void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
00610 {
00611 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
00612 Scalar x = (m_matU * m_matV.adjoint()).determinant();
00613 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
00614 sv.coeffRef(0) *= x;
00615 if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
00616 if(rotation)
00617 {
00618 MatrixType m(m_matU);
00619 m.col(0) /= x;
00620 rotation->lazyAssign(m * m_matV.adjoint());
00621 }
00622 }
00623
00624
00628 template<typename Derived>
00629 inline SVD<typename MatrixBase<Derived>::PlainObject>
00630 MatrixBase<Derived>::svd() const
00631 {
00632 return SVD<PlainObject>(derived());
00633 }
00634
00635 }
00636
00637 #endif // EIGEN2_SVD_H