00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_LLT_H
00011 #define EIGEN_LLT_H
00012
00013 namespace Eigen {
00014
00015 namespace internal{
00016 template<typename MatrixType, int UpLo> struct LLT_Traits;
00017 }
00018
00046
00047
00048
00049
00050 template<typename _MatrixType, int _UpLo> class LLT
00051 {
00052 public:
00053 typedef _MatrixType MatrixType;
00054 enum {
00055 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00056 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00057 Options = MatrixType::Options,
00058 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
00059 };
00060 typedef typename MatrixType::Scalar Scalar;
00061 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
00062 typedef typename MatrixType::Index Index;
00063
00064 enum {
00065 PacketSize = internal::packet_traits<Scalar>::size,
00066 AlignmentMask = int(PacketSize)-1,
00067 UpLo = _UpLo
00068 };
00069
00070 typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
00071
00078 LLT() : m_matrix(), m_isInitialized(false) {}
00079
00086 LLT(Index size) : m_matrix(size, size),
00087 m_isInitialized(false) {}
00088
00089 LLT(const MatrixType& matrix)
00090 : m_matrix(matrix.rows(), matrix.cols()),
00091 m_isInitialized(false)
00092 {
00093 compute(matrix);
00094 }
00095
00097 inline typename Traits::MatrixU matrixU() const
00098 {
00099 eigen_assert(m_isInitialized && "LLT is not initialized.");
00100 return Traits::getU(m_matrix);
00101 }
00102
00104 inline typename Traits::MatrixL matrixL() const
00105 {
00106 eigen_assert(m_isInitialized && "LLT is not initialized.");
00107 return Traits::getL(m_matrix);
00108 }
00109
00120 template<typename Rhs>
00121 inline const internal::solve_retval<LLT, Rhs>
00122 solve(const MatrixBase<Rhs>& b) const
00123 {
00124 eigen_assert(m_isInitialized && "LLT is not initialized.");
00125 eigen_assert(m_matrix.rows()==b.rows()
00126 && "LLT::solve(): invalid number of rows of the right hand side matrix b");
00127 return internal::solve_retval<LLT, Rhs>(*this, b.derived());
00128 }
00129
00130 #ifdef EIGEN2_SUPPORT
00131 template<typename OtherDerived, typename ResultType>
00132 bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
00133 {
00134 *result = this->solve(b);
00135 return true;
00136 }
00137
00138 bool isPositiveDefinite() const { return true; }
00139 #endif
00140
00141 template<typename Derived>
00142 void solveInPlace(MatrixBase<Derived> &bAndX) const;
00143
00144 LLT& compute(const MatrixType& matrix);
00145
00150 inline const MatrixType& matrixLLT() const
00151 {
00152 eigen_assert(m_isInitialized && "LLT is not initialized.");
00153 return m_matrix;
00154 }
00155
00156 MatrixType reconstructedMatrix() const;
00157
00158
00164 ComputationInfo info() const
00165 {
00166 eigen_assert(m_isInitialized && "LLT is not initialized.");
00167 return m_info;
00168 }
00169
00170 inline Index rows() const { return m_matrix.rows(); }
00171 inline Index cols() const { return m_matrix.cols(); }
00172
00173 template<typename VectorType>
00174 LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
00175
00176 protected:
00177
00178 static void check_template_parameters()
00179 {
00180 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
00181 }
00182
00187 MatrixType m_matrix;
00188 bool m_isInitialized;
00189 ComputationInfo m_info;
00190 };
00191
00192 namespace internal {
00193
00194 template<typename Scalar, int UpLo> struct llt_inplace;
00195
00196 template<typename MatrixType, typename VectorType>
00197 static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
00198 {
00199 using std::sqrt;
00200 typedef typename MatrixType::Scalar Scalar;
00201 typedef typename MatrixType::RealScalar RealScalar;
00202 typedef typename MatrixType::Index Index;
00203 typedef typename MatrixType::ColXpr ColXpr;
00204 typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
00205 typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
00206 typedef Matrix<Scalar,Dynamic,1> TempVectorType;
00207 typedef typename TempVectorType::SegmentReturnType TempVecSegment;
00208
00209 Index n = mat.cols();
00210 eigen_assert(mat.rows()==n && vec.size()==n);
00211
00212 TempVectorType temp;
00213
00214 if(sigma>0)
00215 {
00216
00217
00218
00219 temp = sqrt(sigma) * vec;
00220
00221 for(Index i=0; i<n; ++i)
00222 {
00223 JacobiRotation<Scalar> g;
00224 g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
00225
00226 Index rs = n-i-1;
00227 if(rs>0)
00228 {
00229 ColXprSegment x(mat.col(i).tail(rs));
00230 TempVecSegment y(temp.tail(rs));
00231 apply_rotation_in_the_plane(x, y, g);
00232 }
00233 }
00234 }
00235 else
00236 {
00237 temp = vec;
00238 RealScalar beta = 1;
00239 for(Index j=0; j<n; ++j)
00240 {
00241 RealScalar Ljj = numext::real(mat.coeff(j,j));
00242 RealScalar dj = numext::abs2(Ljj);
00243 Scalar wj = temp.coeff(j);
00244 RealScalar swj2 = sigma*numext::abs2(wj);
00245 RealScalar gamma = dj*beta + swj2;
00246
00247 RealScalar x = dj + swj2/beta;
00248 if (x<=RealScalar(0))
00249 return j;
00250 RealScalar nLjj = sqrt(x);
00251 mat.coeffRef(j,j) = nLjj;
00252 beta += swj2/dj;
00253
00254
00255 Index rs = n-j-1;
00256 if(rs)
00257 {
00258 temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
00259 if(gamma != 0)
00260 mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
00261 }
00262 }
00263 }
00264 return -1;
00265 }
00266
00267 template<typename Scalar> struct llt_inplace<Scalar, Lower>
00268 {
00269 typedef typename NumTraits<Scalar>::Real RealScalar;
00270 template<typename MatrixType>
00271 static typename MatrixType::Index unblocked(MatrixType& mat)
00272 {
00273 using std::sqrt;
00274 typedef typename MatrixType::Index Index;
00275
00276 eigen_assert(mat.rows()==mat.cols());
00277 const Index size = mat.rows();
00278 for(Index k = 0; k < size; ++k)
00279 {
00280 Index rs = size-k-1;
00281
00282 Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
00283 Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
00284 Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
00285
00286 RealScalar x = numext::real(mat.coeff(k,k));
00287 if (k>0) x -= A10.squaredNorm();
00288 if (x<=RealScalar(0))
00289 return k;
00290 mat.coeffRef(k,k) = x = sqrt(x);
00291 if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
00292 if (rs>0) A21 *= RealScalar(1)/x;
00293 }
00294 return -1;
00295 }
00296
00297 template<typename MatrixType>
00298 static typename MatrixType::Index blocked(MatrixType& m)
00299 {
00300 typedef typename MatrixType::Index Index;
00301 eigen_assert(m.rows()==m.cols());
00302 Index size = m.rows();
00303 if(size<32)
00304 return unblocked(m);
00305
00306 Index blockSize = size/8;
00307 blockSize = (blockSize/16)*16;
00308 blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
00309
00310 for (Index k=0; k<size; k+=blockSize)
00311 {
00312
00313
00314
00315
00316 Index bs = (std::min)(blockSize, size-k);
00317 Index rs = size - k - bs;
00318 Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
00319 Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
00320 Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
00321
00322 Index ret;
00323 if((ret=unblocked(A11))>=0) return k+ret;
00324 if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
00325 if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1);
00326 }
00327 return -1;
00328 }
00329
00330 template<typename MatrixType, typename VectorType>
00331 static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
00332 {
00333 return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
00334 }
00335 };
00336
00337 template<typename Scalar> struct llt_inplace<Scalar, Upper>
00338 {
00339 typedef typename NumTraits<Scalar>::Real RealScalar;
00340
00341 template<typename MatrixType>
00342 static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat)
00343 {
00344 Transpose<MatrixType> matt(mat);
00345 return llt_inplace<Scalar, Lower>::unblocked(matt);
00346 }
00347 template<typename MatrixType>
00348 static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat)
00349 {
00350 Transpose<MatrixType> matt(mat);
00351 return llt_inplace<Scalar, Lower>::blocked(matt);
00352 }
00353 template<typename MatrixType, typename VectorType>
00354 static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
00355 {
00356 Transpose<MatrixType> matt(mat);
00357 return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
00358 }
00359 };
00360
00361 template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
00362 {
00363 typedef const TriangularView<const MatrixType, Lower> MatrixL;
00364 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
00365 static inline MatrixL getL(const MatrixType& m) { return m; }
00366 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
00367 static bool inplace_decomposition(MatrixType& m)
00368 { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
00369 };
00370
00371 template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
00372 {
00373 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
00374 typedef const TriangularView<const MatrixType, Upper> MatrixU;
00375 static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
00376 static inline MatrixU getU(const MatrixType& m) { return m; }
00377 static bool inplace_decomposition(MatrixType& m)
00378 { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
00379 };
00380
00381 }
00382
00390 template<typename MatrixType, int _UpLo>
00391 LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
00392 {
00393 check_template_parameters();
00394
00395 eigen_assert(a.rows()==a.cols());
00396 const Index size = a.rows();
00397 m_matrix.resize(size, size);
00398 m_matrix = a;
00399
00400 m_isInitialized = true;
00401 bool ok = Traits::inplace_decomposition(m_matrix);
00402 m_info = ok ? Success : NumericalIssue;
00403
00404 return *this;
00405 }
00406
00412 template<typename _MatrixType, int _UpLo>
00413 template<typename VectorType>
00414 LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
00415 {
00416 EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
00417 eigen_assert(v.size()==m_matrix.cols());
00418 eigen_assert(m_isInitialized);
00419 if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
00420 m_info = NumericalIssue;
00421 else
00422 m_info = Success;
00423
00424 return *this;
00425 }
00426
00427 namespace internal {
00428 template<typename _MatrixType, int UpLo, typename Rhs>
00429 struct solve_retval<LLT<_MatrixType, UpLo>, Rhs>
00430 : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
00431 {
00432 typedef LLT<_MatrixType,UpLo> LLTType;
00433 EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)
00434
00435 template<typename Dest> void evalTo(Dest& dst) const
00436 {
00437 dst = rhs();
00438 dec().solveInPlace(dst);
00439 }
00440 };
00441 }
00442
00456 template<typename MatrixType, int _UpLo>
00457 template<typename Derived>
00458 void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
00459 {
00460 eigen_assert(m_isInitialized && "LLT is not initialized.");
00461 eigen_assert(m_matrix.rows()==bAndX.rows());
00462 matrixL().solveInPlace(bAndX);
00463 matrixU().solveInPlace(bAndX);
00464 }
00465
00469 template<typename MatrixType, int _UpLo>
00470 MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
00471 {
00472 eigen_assert(m_isInitialized && "LLT is not initialized.");
00473 return matrixL() * matrixL().adjoint().toDenseMatrix();
00474 }
00475
00479 template<typename Derived>
00480 inline const LLT<typename MatrixBase<Derived>::PlainObject>
00481 MatrixBase<Derived>::llt() const
00482 {
00483 return LLT<PlainObject>(derived());
00484 }
00485
00489 template<typename MatrixType, unsigned int UpLo>
00490 inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
00491 SelfAdjointView<MatrixType, UpLo>::llt() const
00492 {
00493 return LLT<PlainObject,UpLo>(m_matrix);
00494 }
00495
00496 }
00497
00498 #endif // EIGEN_LLT_H