00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011 #ifndef EIGEN_HYPERPLANE_H
00012 #define EIGEN_HYPERPLANE_H
00013
00014 namespace Eigen {
00015
00033 template <typename _Scalar, int _AmbientDim, int _Options>
00034 class Hyperplane
00035 {
00036 public:
00037 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
00038 enum {
00039 AmbientDimAtCompileTime = _AmbientDim,
00040 Options = _Options
00041 };
00042 typedef _Scalar Scalar;
00043 typedef typename NumTraits<Scalar>::Real RealScalar;
00044 typedef DenseIndex Index;
00045 typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
00046 typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic
00047 ? Dynamic
00048 : Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients;
00049 typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
00050 typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType;
00051
00053 inline Hyperplane() {}
00054
00055 template<int OtherOptions>
00056 Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
00057 : m_coeffs(other.coeffs())
00058 {}
00059
00062 inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}
00063
00067 inline Hyperplane(const VectorType& n, const VectorType& e)
00068 : m_coeffs(n.size()+1)
00069 {
00070 normal() = n;
00071 offset() = -n.dot(e);
00072 }
00073
00078 inline Hyperplane(const VectorType& n, const Scalar& d)
00079 : m_coeffs(n.size()+1)
00080 {
00081 normal() = n;
00082 offset() = d;
00083 }
00084
00088 static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
00089 {
00090 Hyperplane result(p0.size());
00091 result.normal() = (p1 - p0).unitOrthogonal();
00092 result.offset() = -p0.dot(result.normal());
00093 return result;
00094 }
00095
00099 static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
00100 {
00101 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
00102 Hyperplane result(p0.size());
00103 VectorType v0(p2 - p0), v1(p1 - p0);
00104 result.normal() = v0.cross(v1);
00105 RealScalar norm = result.normal().norm();
00106 if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon())
00107 {
00108 Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
00109 JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
00110 result.normal() = svd.matrixV().col(2);
00111 }
00112 else
00113 result.normal() /= norm;
00114 result.offset() = -p0.dot(result.normal());
00115 return result;
00116 }
00117
00122
00123 explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
00124 {
00125 normal() = parametrized.direction().unitOrthogonal();
00126 offset() = -parametrized.origin().dot(normal());
00127 }
00128
00129 ~Hyperplane() {}
00130
00132 inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }
00133
00135 void normalize(void)
00136 {
00137 m_coeffs /= normal().norm();
00138 }
00139
00143 inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
00144
00148 inline Scalar absDistance(const VectorType& p) const { using std::abs; return abs(signedDistance(p)); }
00149
00152 inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
00153
00157 inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }
00158
00162 inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
00163
00167 inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
00168
00171 inline Scalar& offset() { return m_coeffs(dim()); }
00172
00176 inline const Coefficients& coeffs() const { return m_coeffs; }
00177
00181 inline Coefficients& coeffs() { return m_coeffs; }
00182
00189 VectorType intersection(const Hyperplane& other) const
00190 {
00191 using std::abs;
00192 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
00193 Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
00194
00195
00196 if(internal::isMuchSmallerThan(det, Scalar(1)))
00197 {
00198 if(abs(coeffs().coeff(1))>abs(coeffs().coeff(0)))
00199 return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
00200 else
00201 return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
00202 }
00203 else
00204 {
00205 Scalar invdet = Scalar(1) / det;
00206 return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
00207 invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
00208 }
00209 }
00210
00217 template<typename XprType>
00218 inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
00219 {
00220 if (traits==Affine)
00221 normal() = mat.inverse().transpose() * normal();
00222 else if (traits==Isometry)
00223 normal() = mat * normal();
00224 else
00225 {
00226 eigen_assert(0 && "invalid traits value in Hyperplane::transform()");
00227 }
00228 return *this;
00229 }
00230
00238 template<int TrOptions>
00239 inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
00240 TransformTraits traits = Affine)
00241 {
00242 transform(t.linear(), traits);
00243 offset() -= normal().dot(t.translation());
00244 return *this;
00245 }
00246
00252 template<typename NewScalarType>
00253 inline typename internal::cast_return_type<Hyperplane,
00254 Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
00255 {
00256 return typename internal::cast_return_type<Hyperplane,
00257 Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this);
00258 }
00259
00261 template<typename OtherScalarType,int OtherOptions>
00262 inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
00263 { m_coeffs = other.coeffs().template cast<Scalar>(); }
00264
00269 template<int OtherOptions>
00270 bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
00271 { return m_coeffs.isApprox(other.m_coeffs, prec); }
00272
00273 protected:
00274
00275 Coefficients m_coeffs;
00276 };
00277
00278 }
00279
00280 #endif // EIGEN_HYPERPLANE_H