SuiteSparseQRSupport.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_SUITESPARSEQRSUPPORT_H
00011 #define EIGEN_SUITESPARSEQRSUPPORT_H
00012 
00013 namespace Eigen {
00014   
00015   template<typename MatrixType> class SPQR; 
00016   template<typename SPQRType> struct SPQRMatrixQReturnType; 
00017   template<typename SPQRType> struct SPQRMatrixQTransposeReturnType; 
00018   template <typename SPQRType, typename Derived> struct SPQR_QProduct;
00019   namespace internal {
00020     template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
00021     {
00022       typedef typename SPQRType::MatrixType ReturnType;
00023     };
00024     template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
00025     {
00026       typedef typename SPQRType::MatrixType ReturnType;
00027     };
00028     template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
00029     {
00030       typedef typename Derived::PlainObject ReturnType;
00031     };
00032   } // End namespace internal
00033   
00056 template<typename _MatrixType>
00057 class SPQR
00058 {
00059   public:
00060     typedef typename _MatrixType::Scalar Scalar;
00061     typedef typename _MatrixType::RealScalar RealScalar;
00062     typedef UF_long Index ; 
00063     typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType;
00064     typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
00065   public:
00066     SPQR() 
00067       : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
00068     { 
00069       cholmod_l_start(&m_cc);
00070     }
00071     
00072     SPQR(const _MatrixType& matrix)
00073     : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
00074     {
00075       cholmod_l_start(&m_cc);
00076       compute(matrix);
00077     }
00078     
00079     ~SPQR()
00080     {
00081       SPQR_free();
00082       cholmod_l_finish(&m_cc);
00083     }
00084     void SPQR_free()
00085     {
00086       cholmod_l_free_sparse(&m_H, &m_cc);
00087       cholmod_l_free_sparse(&m_cR, &m_cc);
00088       cholmod_l_free_dense(&m_HTau, &m_cc);
00089       std::free(m_E);
00090       std::free(m_HPinv);
00091     }
00092 
00093     void compute(const _MatrixType& matrix)
00094     {
00095       if(m_isInitialized) SPQR_free();
00096 
00097       MatrixType mat(matrix);
00098       
00099       /* Compute the default threshold as in MatLab, see:
00100        * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
00101        * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 
00102        */
00103       RealScalar pivotThreshold = m_tolerance;
00104       if(m_useDefaultThreshold) 
00105       {
00106         using std::max;
00107         RealScalar max2Norm = 0.0;
00108         for (int j = 0; j < mat.cols(); j++) max2Norm = (max)(max2Norm, mat.col(j).norm());
00109         if(max2Norm==RealScalar(0))
00110           max2Norm = RealScalar(1);
00111         pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
00112       }
00113       
00114       cholmod_sparse A; 
00115       A = viewAsCholmod(mat);
00116       Index col = matrix.cols();
00117       m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A, 
00118                              &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
00119 
00120       if (!m_cR)
00121       {
00122         m_info = NumericalIssue; 
00123         m_isInitialized = false;
00124         return;
00125       }
00126       m_info = Success;
00127       m_isInitialized = true;
00128       m_isRUpToDate = false;
00129     }
00133     inline Index rows() const {return m_cR->nrow; }
00134     
00138     inline Index cols() const { return m_cR->ncol; }
00139    
00144     template<typename Rhs>
00145     inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const 
00146     {
00147       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
00148       eigen_assert(this->rows()==B.rows()
00149                     && "SPQR::solve(): invalid number of rows of the right hand side matrix B");
00150           return internal::solve_retval<SPQR, Rhs>(*this, B.derived());
00151     }
00152     
00153     template<typename Rhs, typename Dest>
00154     void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
00155     {
00156       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
00157       eigen_assert(b.cols()==1 && "This method is for vectors only");
00158 
00159       //Compute Q^T * b
00160       typename Dest::PlainObject y, y2;
00161       y = matrixQ().transpose() * b;
00162       
00163       // Solves with the triangular matrix R
00164       Index rk = this->rank();
00165       y2 = y;
00166       y.resize((std::max)(cols(),Index(y.rows())),y.cols());
00167       y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
00168 
00169       // Apply the column permutation 
00170       // colsPermutation() performs a copy of the permutation,
00171       // so let's apply it manually:
00172       for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
00173       for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
00174       
00175 //       y.bottomRows(y.rows()-rk).setZero();
00176 //       dest = colsPermutation() * y.topRows(cols());
00177       
00178       m_info = Success;
00179     }
00180     
00183     const MatrixType matrixR() const
00184     {
00185       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
00186       if(!m_isRUpToDate) {
00187         m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR);
00188         m_isRUpToDate = true;
00189       }
00190       return m_R;
00191     }
00193     SPQRMatrixQReturnType<SPQR> matrixQ() const
00194     {
00195       return SPQRMatrixQReturnType<SPQR>(*this);
00196     }
00198     PermutationType colsPermutation() const
00199     { 
00200       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00201       Index n = m_cR->ncol;
00202       PermutationType colsPerm(n);
00203       for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j];
00204       return colsPerm; 
00205       
00206     }
00211     Index rank() const
00212     {
00213       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00214       return m_cc.SPQR_istat[4];
00215     }
00217     void setSPQROrdering(int ord) { m_ordering = ord;}
00219     void setPivotThreshold(const RealScalar& tol)
00220     {
00221       m_useDefaultThreshold = false;
00222       m_tolerance = tol;
00223     }
00224     
00226     cholmod_common *cholmodCommon() const { return &m_cc; }
00227     
00228     
00234     ComputationInfo info() const
00235     {
00236       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00237       return m_info;
00238     }
00239   protected:
00240     bool m_isInitialized;
00241     bool m_analysisIsOk;
00242     bool m_factorizationIsOk;
00243     mutable bool m_isRUpToDate;
00244     mutable ComputationInfo m_info;
00245     int m_ordering; // Ordering method to use, see SPQR's manual
00246     int m_allow_tol; // Allow to use some tolerance during numerical factorization.
00247     RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
00248     mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
00249     mutable MatrixType m_R; // The sparse matrix R in Eigen format
00250     mutable Index *m_E; // The permutation applied to columns
00251     mutable cholmod_sparse *m_H;  //The householder vectors
00252     mutable Index *m_HPinv; // The row permutation of H
00253     mutable cholmod_dense *m_HTau; // The Householder coefficients
00254     mutable Index m_rank; // The rank of the matrix
00255     mutable cholmod_common m_cc; // Workspace and parameters
00256     bool m_useDefaultThreshold;     // Use default threshold
00257     template<typename ,typename > friend struct SPQR_QProduct;
00258 };
00259 
00260 template <typename SPQRType, typename Derived>
00261 struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
00262 {
00263   typedef typename SPQRType::Scalar Scalar;
00264   typedef typename SPQRType::Index Index;
00265   //Define the constructor to get reference to argument types
00266   SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
00267   
00268   inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
00269   inline Index cols() const { return m_other.cols(); }
00270   // Assign to a vector
00271   template<typename ResType>
00272   void evalTo(ResType& res) const
00273   {
00274     cholmod_dense y_cd;
00275     cholmod_dense *x_cd; 
00276     int method = m_transpose ? SPQR_QTX : SPQR_QX; 
00277     cholmod_common *cc = m_spqr.cholmodCommon();
00278     y_cd = viewAsCholmod(m_other.const_cast_derived());
00279     x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
00280     res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
00281     cholmod_l_free_dense(&x_cd, cc);
00282   }
00283   const SPQRType& m_spqr; 
00284   const Derived& m_other; 
00285   bool m_transpose; 
00286   
00287 };
00288 template<typename SPQRType>
00289 struct SPQRMatrixQReturnType{
00290   
00291   SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
00292   template<typename Derived>
00293   SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
00294   {
00295     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
00296   }
00297   SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
00298   {
00299     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
00300   }
00301   // To use for operations with the transpose of Q
00302   SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
00303   {
00304     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
00305   }
00306   const SPQRType& m_spqr;
00307 };
00308 
00309 template<typename SPQRType>
00310 struct SPQRMatrixQTransposeReturnType{
00311   SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
00312   template<typename Derived>
00313   SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
00314   {
00315     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
00316   }
00317   const SPQRType& m_spqr;
00318 };
00319 
00320 namespace internal {
00321   
00322 template<typename _MatrixType, typename Rhs>
00323 struct solve_retval<SPQR<_MatrixType>, Rhs>
00324   : solve_retval_base<SPQR<_MatrixType>, Rhs>
00325 {
00326   typedef SPQR<_MatrixType> Dec;
00327   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00328 
00329   template<typename Dest> void evalTo(Dest& dst) const
00330   {
00331     dec()._solve(rhs(),dst);
00332   }
00333 };
00334 
00335 } // end namespace internal
00336 
00337 }// End namespace Eigen
00338 #endif


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:36:34