SparseQR.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
00005 // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 #ifndef EIGEN_SPARSE_QR_H
00012 #define EIGEN_SPARSE_QR_H
00013 
00014 namespace Eigen {
00015 
00016 template<typename MatrixType, typename OrderingType> class SparseQR;
00017 template<typename SparseQRType> struct SparseQRMatrixQReturnType;
00018 template<typename SparseQRType> struct SparseQRMatrixQTransposeReturnType;
00019 template<typename SparseQRType, typename Derived> struct SparseQR_QProduct;
00020 namespace internal {
00021   template <typename SparseQRType> struct traits<SparseQRMatrixQReturnType<SparseQRType> >
00022   {
00023     typedef typename SparseQRType::MatrixType ReturnType;
00024     typedef typename ReturnType::Index Index;
00025     typedef typename ReturnType::StorageKind StorageKind;
00026   };
00027   template <typename SparseQRType> struct traits<SparseQRMatrixQTransposeReturnType<SparseQRType> >
00028   {
00029     typedef typename SparseQRType::MatrixType ReturnType;
00030   };
00031   template <typename SparseQRType, typename Derived> struct traits<SparseQR_QProduct<SparseQRType, Derived> >
00032   {
00033     typedef typename Derived::PlainObject ReturnType;
00034   };
00035 } // End namespace internal
00036 
00064 template<typename _MatrixType, typename _OrderingType>
00065 class SparseQR
00066 {
00067   public:
00068     typedef _MatrixType MatrixType;
00069     typedef _OrderingType OrderingType;
00070     typedef typename MatrixType::Scalar Scalar;
00071     typedef typename MatrixType::RealScalar RealScalar;
00072     typedef typename MatrixType::Index Index;
00073     typedef SparseMatrix<Scalar,ColMajor,Index> QRMatrixType;
00074     typedef Matrix<Index, Dynamic, 1> IndexVector;
00075     typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
00076     typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
00077   public:
00078     SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
00079     { }
00080     
00087     SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
00088     {
00089       compute(mat);
00090     }
00091     
00098     void compute(const MatrixType& mat)
00099     {
00100       analyzePattern(mat);
00101       factorize(mat);
00102     }
00103     void analyzePattern(const MatrixType& mat);
00104     void factorize(const MatrixType& mat);
00105     
00108     inline Index rows() const { return m_pmat.rows(); }
00109     
00112     inline Index cols() const { return m_pmat.cols();}
00113     
00116     const QRMatrixType& matrixR() const { return m_R; }
00117     
00122     Index rank() const 
00123     {
00124       eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
00125       return m_nonzeropivots; 
00126     }
00127     
00146     SparseQRMatrixQReturnType<SparseQR> matrixQ() const 
00147     { return SparseQRMatrixQReturnType<SparseQR>(*this); }
00148     
00152     const PermutationType& colsPermutation() const
00153     { 
00154       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00155       return m_outputPerm_c;
00156     }
00157     
00161     std::string lastErrorMessage() const { return m_lastError; }
00162     
00164     template<typename Rhs, typename Dest>
00165     bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
00166     {
00167       eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
00168       eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
00169 
00170       Index rank = this->rank();
00171       
00172       // Compute Q^T * b;
00173       typename Dest::PlainObject y, b;
00174       y = this->matrixQ().transpose() * B; 
00175       b = y;
00176       
00177       // Solve with the triangular matrix R
00178       y.resize((std::max)(cols(),Index(y.rows())),y.cols());
00179       y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank));
00180       y.bottomRows(y.rows()-rank).setZero();
00181 
00182       // Apply the column permutation
00183       if (m_perm_c.size())  dest = colsPermutation() * y.topRows(cols());
00184       else                  dest = y.topRows(cols());
00185       
00186       m_info = Success;
00187       return true;
00188     }
00189     
00190 
00196     void setPivotThreshold(const RealScalar& threshold)
00197     {
00198       m_useDefaultThreshold = false;
00199       m_threshold = threshold;
00200     }
00201     
00206     template<typename Rhs>
00207     inline const internal::solve_retval<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const 
00208     {
00209       eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
00210       eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
00211       return internal::solve_retval<SparseQR, Rhs>(*this, B.derived());
00212     }
00213     template<typename Rhs>
00214     inline const internal::sparse_solve_retval<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
00215     {
00216           eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
00217           eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
00218           return internal::sparse_solve_retval<SparseQR, Rhs>(*this, B.derived());
00219     }
00220     
00229     ComputationInfo info() const
00230     {
00231       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00232       return m_info;
00233     }
00234 
00235   protected:
00236     inline void sort_matrix_Q()
00237     {
00238       if(this->m_isQSorted) return;
00239       // The matrix Q is sorted during the transposition
00240       SparseMatrix<Scalar, RowMajor, Index> mQrm(this->m_Q);
00241       this->m_Q = mQrm;
00242       this->m_isQSorted = true;
00243     }
00244 
00245     
00246   protected:
00247     bool m_isInitialized;
00248     bool m_analysisIsok;
00249     bool m_factorizationIsok;
00250     mutable ComputationInfo m_info;
00251     std::string m_lastError;
00252     QRMatrixType m_pmat;            // Temporary matrix
00253     QRMatrixType m_R;               // The triangular factor matrix
00254     QRMatrixType m_Q;               // The orthogonal reflectors
00255     ScalarVector m_hcoeffs;         // The Householder coefficients
00256     PermutationType m_perm_c;       // Fill-reducing  Column  permutation
00257     PermutationType m_pivotperm;    // The permutation for rank revealing
00258     PermutationType m_outputPerm_c; // The final column permutation
00259     RealScalar m_threshold;         // Threshold to determine null Householder reflections
00260     bool m_useDefaultThreshold;     // Use default threshold
00261     Index m_nonzeropivots;          // Number of non zero pivots found 
00262     IndexVector m_etree;            // Column elimination tree
00263     IndexVector m_firstRowElt;      // First element in each row
00264     bool m_isQSorted;               // whether Q is sorted or not
00265     bool m_isEtreeOk;               // whether the elimination tree match the initial input matrix
00266     
00267     template <typename, typename > friend struct SparseQR_QProduct;
00268     template <typename > friend struct SparseQRMatrixQReturnType;
00269     
00270 };
00271 
00281 template <typename MatrixType, typename OrderingType>
00282 void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
00283 {
00284   eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
00285   // Copy to a column major matrix if the input is rowmajor
00286   typename internal::conditional<MatrixType::IsRowMajor,QRMatrixType,const MatrixType&>::type matCpy(mat);
00287   // Compute the column fill reducing ordering
00288   OrderingType ord; 
00289   ord(matCpy, m_perm_c); 
00290   Index n = mat.cols();
00291   Index m = mat.rows();
00292   Index diagSize = (std::min)(m,n);
00293   
00294   if (!m_perm_c.size())
00295   {
00296     m_perm_c.resize(n);
00297     m_perm_c.indices().setLinSpaced(n, 0,n-1);
00298   }
00299   
00300   // Compute the column elimination tree of the permuted matrix
00301   m_outputPerm_c = m_perm_c.inverse();
00302   internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
00303   m_isEtreeOk = true;
00304   
00305   m_R.resize(m, n);
00306   m_Q.resize(m, diagSize);
00307   
00308   // Allocate space for nonzero elements : rough estimation
00309   m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
00310   m_Q.reserve(2*mat.nonZeros());
00311   m_hcoeffs.resize(diagSize);
00312   m_analysisIsok = true;
00313 }
00314 
00322 template <typename MatrixType, typename OrderingType>
00323 void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
00324 {
00325   using std::abs;
00326   using std::max;
00327   
00328   eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
00329   Index m = mat.rows();
00330   Index n = mat.cols();
00331   Index diagSize = (std::min)(m,n);
00332   IndexVector mark((std::max)(m,n)); mark.setConstant(-1);  // Record the visited nodes
00333   IndexVector Ridx(n), Qidx(m);                             // Store temporarily the row indexes for the current column of R and Q
00334   Index nzcolR, nzcolQ;                                     // Number of nonzero for the current column of R and Q
00335   ScalarVector tval(m);                                     // The dense vector used to compute the current column
00336   RealScalar pivotThreshold = m_threshold;
00337   
00338   m_R.setZero();
00339   m_Q.setZero();
00340   m_pmat = mat;
00341   if(!m_isEtreeOk)
00342   {
00343     m_outputPerm_c = m_perm_c.inverse();
00344     internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
00345     m_isEtreeOk = true;
00346   }
00347 
00348   m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
00349   
00350   // Apply the fill-in reducing permutation lazily:
00351   {
00352     // If the input is row major, copy the original column indices,
00353     // otherwise directly use the input matrix
00354     // 
00355     IndexVector originalOuterIndicesCpy;
00356     const Index *originalOuterIndices = mat.outerIndexPtr();
00357     if(MatrixType::IsRowMajor)
00358     {
00359       originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(),n+1);
00360       originalOuterIndices = originalOuterIndicesCpy.data();
00361     }
00362     
00363     for (int i = 0; i < n; i++)
00364     {
00365       Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
00366       m_pmat.outerIndexPtr()[p] = originalOuterIndices[i]; 
00367       m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i+1] - originalOuterIndices[i]; 
00368     }
00369   }
00370   
00371   /* Compute the default threshold as in MatLab, see:
00372    * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
00373    * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 
00374    */
00375   if(m_useDefaultThreshold) 
00376   {
00377     RealScalar max2Norm = 0.0;
00378     for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
00379     if(max2Norm==RealScalar(0))
00380       max2Norm = RealScalar(1);
00381     pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
00382   }
00383   
00384   // Initialize the numerical permutation
00385   m_pivotperm.setIdentity(n);
00386   
00387   Index nonzeroCol = 0; // Record the number of valid pivots
00388   m_Q.startVec(0);
00389 
00390   // Left looking rank-revealing QR factorization: compute a column of R and Q at a time
00391   for (Index col = 0; col < n; ++col)
00392   {
00393     mark.setConstant(-1);
00394     m_R.startVec(col);
00395     mark(nonzeroCol) = col;
00396     Qidx(0) = nonzeroCol;
00397     nzcolR = 0; nzcolQ = 1;
00398     bool found_diag = nonzeroCol>=m;
00399     tval.setZero(); 
00400     
00401     // Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
00402     // all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k.
00403     // Note: if the diagonal entry does not exist, then its contribution must be explicitly added,
00404     // thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
00405     for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
00406     {
00407       Index curIdx = nonzeroCol;
00408       if(itp) curIdx = itp.row();
00409       if(curIdx == nonzeroCol) found_diag = true;
00410       
00411       // Get the nonzeros indexes of the current column of R
00412       Index st = m_firstRowElt(curIdx); // The traversal of the etree starts here 
00413       if (st < 0 )
00414       {
00415         m_lastError = "Empty row found during numerical factorization";
00416         m_info = InvalidInput;
00417         return;
00418       }
00419 
00420       // Traverse the etree 
00421       Index bi = nzcolR;
00422       for (; mark(st) != col; st = m_etree(st))
00423       {
00424         Ridx(nzcolR) = st;  // Add this row to the list,
00425         mark(st) = col;     // and mark this row as visited
00426         nzcolR++;
00427       }
00428 
00429       // Reverse the list to get the topological ordering
00430       Index nt = nzcolR-bi;
00431       for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1));
00432        
00433       // Copy the current (curIdx,pcol) value of the input matrix
00434       if(itp) tval(curIdx) = itp.value();
00435       else    tval(curIdx) = Scalar(0);
00436       
00437       // Compute the pattern of Q(:,k)
00438       if(curIdx > nonzeroCol && mark(curIdx) != col ) 
00439       {
00440         Qidx(nzcolQ) = curIdx;  // Add this row to the pattern of Q,
00441         mark(curIdx) = col;     // and mark it as visited
00442         nzcolQ++;
00443       }
00444     }
00445 
00446     // Browse all the indexes of R(:,col) in reverse order
00447     for (Index i = nzcolR-1; i >= 0; i--)
00448     {
00449       Index curIdx = Ridx(i);
00450       
00451       // Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
00452       Scalar tdot(0);
00453       
00454       // First compute q' * tval
00455       tdot = m_Q.col(curIdx).dot(tval);
00456 
00457       tdot *= m_hcoeffs(curIdx);
00458       
00459       // Then update tval = tval - q * tau
00460       // FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse")
00461       for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
00462         tval(itq.row()) -= itq.value() * tdot;
00463 
00464       // Detect fill-in for the current column of Q
00465       if(m_etree(Ridx(i)) == nonzeroCol)
00466       {
00467         for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
00468         {
00469           Index iQ = itq.row();
00470           if (mark(iQ) != col)
00471           {
00472             Qidx(nzcolQ++) = iQ;  // Add this row to the pattern of Q,
00473             mark(iQ) = col;       // and mark it as visited
00474           }
00475         }
00476       }
00477     } // End update current column
00478     
00479     Scalar tau = 0;
00480     RealScalar beta = 0;
00481     
00482     if(nonzeroCol < diagSize)
00483     {
00484       // Compute the Householder reflection that eliminate the current column
00485       // FIXME this step should call the Householder module.
00486       Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
00487       
00488       // First, the squared norm of Q((col+1):m, col)
00489       RealScalar sqrNorm = 0.;
00490       for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
00491       if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
00492       {
00493         beta = numext::real(c0);
00494         tval(Qidx(0)) = 1;
00495       }
00496       else
00497       {
00498         using std::sqrt;
00499         beta = sqrt(numext::abs2(c0) + sqrNorm);
00500         if(numext::real(c0) >= RealScalar(0))
00501           beta = -beta;
00502         tval(Qidx(0)) = 1;
00503         for (Index itq = 1; itq < nzcolQ; ++itq)
00504           tval(Qidx(itq)) /= (c0 - beta);
00505         tau = numext::conj((beta-c0) / beta);
00506           
00507       }
00508     }
00509 
00510     // Insert values in R
00511     for (Index  i = nzcolR-1; i >= 0; i--)
00512     {
00513       Index curIdx = Ridx(i);
00514       if(curIdx < nonzeroCol) 
00515       {
00516         m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx);
00517         tval(curIdx) = Scalar(0.);
00518       }
00519     }
00520 
00521     if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
00522     {
00523       m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
00524       // The householder coefficient
00525       m_hcoeffs(nonzeroCol) = tau;
00526       // Record the householder reflections
00527       for (Index itq = 0; itq < nzcolQ; ++itq)
00528       {
00529         Index iQ = Qidx(itq);
00530         m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
00531         tval(iQ) = Scalar(0.);
00532       }
00533       nonzeroCol++;
00534       if(nonzeroCol<diagSize)
00535         m_Q.startVec(nonzeroCol);
00536     }
00537     else
00538     {
00539       // Zero pivot found: move implicitly this column to the end
00540       for (Index j = nonzeroCol; j < n-1; j++) 
00541         std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
00542       
00543       // Recompute the column elimination tree
00544       internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
00545       m_isEtreeOk = false;
00546     }
00547   }
00548   
00549   m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
00550   
00551   // Finalize the column pointers of the sparse matrices R and Q
00552   m_Q.finalize();
00553   m_Q.makeCompressed();
00554   m_R.finalize();
00555   m_R.makeCompressed();
00556   m_isQSorted = false;
00557 
00558   m_nonzeropivots = nonzeroCol;
00559   
00560   if(nonzeroCol<n)
00561   {
00562     // Permute the triangular factor to put the 'dead' columns to the end
00563     QRMatrixType tempR(m_R);
00564     m_R = tempR * m_pivotperm;
00565     
00566     // Update the column permutation
00567     m_outputPerm_c = m_outputPerm_c * m_pivotperm;
00568   }
00569   
00570   m_isInitialized = true; 
00571   m_factorizationIsok = true;
00572   m_info = Success;
00573 }
00574 
00575 namespace internal {
00576   
00577 template<typename _MatrixType, typename OrderingType, typename Rhs>
00578 struct solve_retval<SparseQR<_MatrixType,OrderingType>, Rhs>
00579   : solve_retval_base<SparseQR<_MatrixType,OrderingType>, Rhs>
00580 {
00581   typedef SparseQR<_MatrixType,OrderingType> Dec;
00582   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00583 
00584   template<typename Dest> void evalTo(Dest& dst) const
00585   {
00586     dec()._solve(rhs(),dst);
00587   }
00588 };
00589 template<typename _MatrixType, typename OrderingType, typename Rhs>
00590 struct sparse_solve_retval<SparseQR<_MatrixType, OrderingType>, Rhs>
00591  : sparse_solve_retval_base<SparseQR<_MatrixType, OrderingType>, Rhs>
00592 {
00593   typedef SparseQR<_MatrixType, OrderingType> Dec;
00594   EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec, Rhs)
00595 
00596   template<typename Dest> void evalTo(Dest& dst) const
00597   {
00598     this->defaultEvalTo(dst);
00599   }
00600 };
00601 } // end namespace internal
00602 
00603 template <typename SparseQRType, typename Derived>
00604 struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> >
00605 {
00606   typedef typename SparseQRType::QRMatrixType MatrixType;
00607   typedef typename SparseQRType::Scalar Scalar;
00608   typedef typename SparseQRType::Index Index;
00609   // Get the references 
00610   SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) : 
00611   m_qr(qr),m_other(other),m_transpose(transpose) {}
00612   inline Index rows() const { return m_transpose ? m_qr.rows() : m_qr.cols(); }
00613   inline Index cols() const { return m_other.cols(); }
00614   
00615   // Assign to a vector
00616   template<typename DesType>
00617   void evalTo(DesType& res) const
00618   {
00619     Index m = m_qr.rows();
00620     Index n = m_qr.cols();
00621     Index diagSize = (std::min)(m,n);
00622     res = m_other;
00623     if (m_transpose)
00624     {
00625       eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
00626       //Compute res = Q' * other column by column
00627       for(Index j = 0; j < res.cols(); j++){
00628         for (Index k = 0; k < diagSize; k++)
00629         {
00630           Scalar tau = Scalar(0);
00631           tau = m_qr.m_Q.col(k).dot(res.col(j));
00632           if(tau==Scalar(0)) continue;
00633           tau = tau * m_qr.m_hcoeffs(k);
00634           res.col(j) -= tau * m_qr.m_Q.col(k);
00635         }
00636       }
00637     }
00638     else
00639     {
00640       eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
00641       // Compute res = Q * other column by column
00642       for(Index j = 0; j < res.cols(); j++)
00643       {
00644         for (Index k = diagSize-1; k >=0; k--)
00645         {
00646           Scalar tau = Scalar(0);
00647           tau = m_qr.m_Q.col(k).dot(res.col(j));
00648           if(tau==Scalar(0)) continue;
00649           tau = tau * m_qr.m_hcoeffs(k);
00650           res.col(j) -= tau * m_qr.m_Q.col(k);
00651         }
00652       }
00653     }
00654   }
00655   
00656   const SparseQRType& m_qr;
00657   const Derived& m_other;
00658   bool m_transpose;
00659 };
00660 
00661 template<typename SparseQRType>
00662 struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<SparseQRType> >
00663 {  
00664   typedef typename SparseQRType::Index Index;
00665   typedef typename SparseQRType::Scalar Scalar;
00666   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
00667   SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {}
00668   template<typename Derived>
00669   SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other)
00670   {
00671     return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false);
00672   }
00673   SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const
00674   {
00675     return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
00676   }
00677   inline Index rows() const { return m_qr.rows(); }
00678   inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
00679   // To use for operations with the transpose of Q
00680   SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
00681   {
00682     return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
00683   }
00684   template<typename Dest> void evalTo(MatrixBase<Dest>& dest) const
00685   {
00686     dest.derived() = m_qr.matrixQ() * Dest::Identity(m_qr.rows(), m_qr.rows());
00687   }
00688   template<typename Dest> void evalTo(SparseMatrixBase<Dest>& dest) const
00689   {
00690     Dest idMat(m_qr.rows(), m_qr.rows());
00691     idMat.setIdentity();
00692     // Sort the sparse householder reflectors if needed
00693     const_cast<SparseQRType *>(&m_qr)->sort_matrix_Q();
00694     dest.derived() = SparseQR_QProduct<SparseQRType, Dest>(m_qr, idMat, false);
00695   }
00696 
00697   const SparseQRType& m_qr;
00698 };
00699 
00700 template<typename SparseQRType>
00701 struct SparseQRMatrixQTransposeReturnType
00702 {
00703   SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {}
00704   template<typename Derived>
00705   SparseQR_QProduct<SparseQRType,Derived> operator*(const MatrixBase<Derived>& other)
00706   {
00707     return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(), true);
00708   }
00709   const SparseQRType& m_qr;
00710 };
00711 
00712 } // end namespace Eigen
00713 
00714 #endif


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:36:12