SparseLU.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
00005 // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 
00012 #ifndef EIGEN_SPARSE_LU_H
00013 #define EIGEN_SPARSE_LU_H
00014 
00015 namespace Eigen {
00016 
00017 template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::Index> > class SparseLU;
00018 template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
00019 template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
00020 
00072 template <typename _MatrixType, typename _OrderingType>
00073 class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::Index>
00074 {
00075   public:
00076     typedef _MatrixType MatrixType; 
00077     typedef _OrderingType OrderingType;
00078     typedef typename MatrixType::Scalar Scalar; 
00079     typedef typename MatrixType::RealScalar RealScalar; 
00080     typedef typename MatrixType::Index Index; 
00081     typedef SparseMatrix<Scalar,ColMajor,Index> NCMatrix;
00082     typedef internal::MappedSuperNodalMatrix<Scalar, Index> SCMatrix; 
00083     typedef Matrix<Scalar,Dynamic,1> ScalarVector;
00084     typedef Matrix<Index,Dynamic,1> IndexVector;
00085     typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
00086     typedef internal::SparseLUImpl<Scalar, Index> Base;
00087     
00088   public:
00089     SparseLU():m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
00090     {
00091       initperfvalues(); 
00092     }
00093     SparseLU(const MatrixType& matrix):m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
00094     {
00095       initperfvalues(); 
00096       compute(matrix);
00097     }
00098     
00099     ~SparseLU()
00100     {
00101       // Free all explicit dynamic pointers 
00102     }
00103     
00104     void analyzePattern (const MatrixType& matrix);
00105     void factorize (const MatrixType& matrix);
00106     void simplicialfactorize(const MatrixType& matrix);
00107     
00112     void compute (const MatrixType& matrix)
00113     {
00114       // Analyze 
00115       analyzePattern(matrix); 
00116       //Factorize
00117       factorize(matrix);
00118     } 
00119     
00120     inline Index rows() const { return m_mat.rows(); }
00121     inline Index cols() const { return m_mat.cols(); }
00123     void isSymmetric(bool sym)
00124     {
00125       m_symmetricmode = sym;
00126     }
00127     
00134     SparseLUMatrixLReturnType<SCMatrix> matrixL() const
00135     {
00136       return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
00137     }
00144     SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,Index> > matrixU() const
00145     {
00146       return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,Index> >(m_Lstore, m_Ustore);
00147     }
00148 
00153     inline const PermutationType& rowsPermutation() const
00154     {
00155       return m_perm_r;
00156     }
00161     inline const PermutationType& colsPermutation() const
00162     {
00163       return m_perm_c;
00164     }
00166     void setPivotThreshold(const RealScalar& thresh)
00167     {
00168       m_diagpivotthresh = thresh; 
00169     }
00170 
00177     template<typename Rhs>
00178     inline const internal::solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const 
00179     {
00180       eigen_assert(m_factorizationIsOk && "SparseLU is not initialized."); 
00181       eigen_assert(rows()==B.rows()
00182                     && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
00183           return internal::solve_retval<SparseLU, Rhs>(*this, B.derived());
00184     }
00185 
00190     template<typename Rhs>
00191     inline const internal::sparse_solve_retval<SparseLU, Rhs> solve(const SparseMatrixBase<Rhs>& B) const 
00192     {
00193       eigen_assert(m_factorizationIsOk && "SparseLU is not initialized."); 
00194       eigen_assert(rows()==B.rows()
00195                     && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
00196           return internal::sparse_solve_retval<SparseLU, Rhs>(*this, B.derived());
00197     }
00198     
00207     ComputationInfo info() const
00208     {
00209       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00210       return m_info;
00211     }
00212     
00216     std::string lastErrorMessage() const
00217     {
00218       return m_lastError; 
00219     }
00220 
00221     template<typename Rhs, typename Dest>
00222     bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
00223     {
00224       Dest& X(X_base.derived());
00225       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
00226       EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
00227                         THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
00228       
00229       // Permute the right hand side to form X = Pr*B
00230       // on return, X is overwritten by the computed solution
00231       X.resize(B.rows(),B.cols());
00232 
00233       // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
00234       for(Index j = 0; j < B.cols(); ++j)
00235         X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
00236       
00237       //Forward substitution with L
00238       this->matrixL().solveInPlace(X);
00239       this->matrixU().solveInPlace(X);
00240       
00241       // Permute back the solution 
00242       for (Index j = 0; j < B.cols(); ++j)
00243         X.col(j) = colsPermutation().inverse() * X.col(j);
00244       
00245       return true; 
00246     }
00247     
00258      Scalar absDeterminant()
00259     {
00260       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
00261       // Initialize with the determinant of the row matrix
00262       Scalar det = Scalar(1.);
00263       // Note that the diagonal blocks of U are stored in supernodes,
00264       // which are available in the  L part :)
00265       for (Index j = 0; j < this->cols(); ++j)
00266       {
00267         for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
00268         {
00269           if(it.index() == j)
00270           {
00271             using std::abs;
00272             det *= abs(it.value());
00273             break;
00274           }
00275         }
00276        }
00277        return det;
00278      }
00279 
00288      Scalar logAbsDeterminant() const
00289      {
00290        eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
00291        Scalar det = Scalar(0.);
00292        for (Index j = 0; j < this->cols(); ++j)
00293        {
00294          for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
00295          {
00296            if(it.row() < j) continue;
00297            if(it.row() == j)
00298            {
00299              using std::log; using std::abs;
00300              det += log(abs(it.value()));
00301              break;
00302            }
00303          }
00304        }
00305        return det;
00306      }
00307 
00312     Scalar signDeterminant()
00313     {
00314       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
00315       // Initialize with the determinant of the row matrix
00316       Index det = 1;
00317       // Note that the diagonal blocks of U are stored in supernodes,
00318       // which are available in the  L part :)
00319       for (Index j = 0; j < this->cols(); ++j)
00320       {
00321         for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
00322         {
00323           if(it.index() == j)
00324           {
00325             if(it.value()<0)
00326               det = -det;
00327             else if(it.value()==0)
00328               return 0;
00329             break;
00330           }
00331         }
00332       }
00333       return det * m_detPermR * m_detPermC;
00334     }
00335     
00340     Scalar determinant()
00341     {
00342       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
00343       // Initialize with the determinant of the row matrix
00344       Scalar det = Scalar(1.);
00345       // Note that the diagonal blocks of U are stored in supernodes,
00346       // which are available in the  L part :)
00347       for (Index j = 0; j < this->cols(); ++j)
00348       {
00349         for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
00350         {
00351           if(it.index() == j)
00352           {
00353             det *= it.value();
00354             break;
00355           }
00356         }
00357       }
00358       return det * Scalar(m_detPermR * m_detPermC);
00359     }
00360 
00361   protected:
00362     // Functions 
00363     void initperfvalues()
00364     {
00365       m_perfv.panel_size = 16;
00366       m_perfv.relax = 1; 
00367       m_perfv.maxsuper = 128; 
00368       m_perfv.rowblk = 16; 
00369       m_perfv.colblk = 8; 
00370       m_perfv.fillfactor = 20;  
00371     }
00372       
00373     // Variables 
00374     mutable ComputationInfo m_info;
00375     bool m_isInitialized;
00376     bool m_factorizationIsOk;
00377     bool m_analysisIsOk;
00378     std::string m_lastError;
00379     NCMatrix m_mat; // The input (permuted ) matrix 
00380     SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
00381     MappedSparseMatrix<Scalar,ColMajor,Index> m_Ustore; // The upper triangular matrix
00382     PermutationType m_perm_c; // Column permutation 
00383     PermutationType m_perm_r ; // Row permutation
00384     IndexVector m_etree; // Column elimination tree 
00385     
00386     typename Base::GlobalLU_t m_glu; 
00387                                
00388     // SparseLU options 
00389     bool m_symmetricmode;
00390     // values for performance 
00391     internal::perfvalues<Index> m_perfv; 
00392     RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
00393     Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
00394     Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
00395   private:
00396     // Disable copy constructor 
00397     SparseLU (const SparseLU& );
00398   
00399 }; // End class SparseLU
00400 
00401 
00402 
00403 // Functions needed by the anaysis phase
00414 template <typename MatrixType, typename OrderingType>
00415 void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
00416 {
00417   
00418   //TODO  It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
00419   
00420   OrderingType ord; 
00421   ord(mat,m_perm_c);
00422   
00423   // Apply the permutation to the column of the input  matrix
00424   //First copy the whole input matrix. 
00425   m_mat = mat;
00426   if (m_perm_c.size()) {
00427     m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.  
00428     //Then, permute only the column pointers
00429     const Index * outerIndexPtr;
00430     if (mat.isCompressed()) outerIndexPtr = mat.outerIndexPtr();
00431     else
00432     {
00433       Index *outerIndexPtr_t = new Index[mat.cols()+1];
00434       for(Index i = 0; i <= mat.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
00435       outerIndexPtr = outerIndexPtr_t;
00436     }
00437     for (Index i = 0; i < mat.cols(); i++)
00438     {
00439       m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
00440       m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
00441     }
00442     if(!mat.isCompressed()) delete[] outerIndexPtr;
00443   }
00444   // Compute the column elimination tree of the permuted matrix 
00445   IndexVector firstRowElt;
00446   internal::coletree(m_mat, m_etree,firstRowElt); 
00447      
00448   // In symmetric mode, do not do postorder here
00449   if (!m_symmetricmode) {
00450     IndexVector post, iwork; 
00451     // Post order etree
00452     internal::treePostorder(m_mat.cols(), m_etree, post); 
00453       
00454    
00455     // Renumber etree in postorder 
00456     Index m = m_mat.cols(); 
00457     iwork.resize(m+1);
00458     for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
00459     m_etree = iwork;
00460     
00461     // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
00462     PermutationType post_perm(m); 
00463     for (Index i = 0; i < m; i++) 
00464       post_perm.indices()(i) = post(i); 
00465         
00466     // Combine the two permutations : postorder the permutation for future use
00467     if(m_perm_c.size()) {
00468       m_perm_c = post_perm * m_perm_c;
00469     }
00470     
00471   } // end postordering 
00472   
00473   m_analysisIsOk = true; 
00474 }
00475 
00476 // Functions needed by the numerical factorization phase
00477 
00478 
00497 template <typename MatrixType, typename OrderingType>
00498 void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
00499 {
00500   using internal::emptyIdxLU;
00501   eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); 
00502   eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
00503   
00504   typedef typename IndexVector::Scalar Index; 
00505   
00506   
00507   // Apply the column permutation computed in analyzepattern()
00508   //   m_mat = matrix * m_perm_c.inverse(); 
00509   m_mat = matrix;
00510   if (m_perm_c.size()) 
00511   {
00512     m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
00513     //Then, permute only the column pointers
00514     const Index * outerIndexPtr;
00515     if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
00516     else
00517     {
00518       Index* outerIndexPtr_t = new Index[matrix.cols()+1];
00519       for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
00520       outerIndexPtr = outerIndexPtr_t;
00521     }
00522     for (Index i = 0; i < matrix.cols(); i++)
00523     {
00524       m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
00525       m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
00526     }
00527     if(!matrix.isCompressed()) delete[] outerIndexPtr;
00528   } 
00529   else 
00530   { //FIXME This should not be needed if the empty permutation is handled transparently
00531     m_perm_c.resize(matrix.cols());
00532     for(Index i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
00533   }
00534   
00535   Index m = m_mat.rows();
00536   Index n = m_mat.cols();
00537   Index nnz = m_mat.nonZeros();
00538   Index maxpanel = m_perfv.panel_size * m;
00539   // Allocate working storage common to the factor routines
00540   Index lwork = 0;
00541   Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu); 
00542   if (info) 
00543   {
00544     m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
00545     m_factorizationIsOk = false;
00546     return ; 
00547   }
00548   
00549   // Set up pointers for integer working arrays 
00550   IndexVector segrep(m); segrep.setZero();
00551   IndexVector parent(m); parent.setZero();
00552   IndexVector xplore(m); xplore.setZero();
00553   IndexVector repfnz(maxpanel);
00554   IndexVector panel_lsub(maxpanel);
00555   IndexVector xprune(n); xprune.setZero();
00556   IndexVector marker(m*internal::LUNoMarker); marker.setZero();
00557   
00558   repfnz.setConstant(-1); 
00559   panel_lsub.setConstant(-1);
00560   
00561   // Set up pointers for scalar working arrays 
00562   ScalarVector dense; 
00563   dense.setZero(maxpanel);
00564   ScalarVector tempv; 
00565   tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
00566   
00567   // Compute the inverse of perm_c
00568   PermutationType iperm_c(m_perm_c.inverse()); 
00569   
00570   // Identify initial relaxed snodes
00571   IndexVector relax_end(n);
00572   if ( m_symmetricmode == true ) 
00573     Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
00574   else
00575     Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
00576   
00577   
00578   m_perm_r.resize(m); 
00579   m_perm_r.indices().setConstant(-1);
00580   marker.setConstant(-1);
00581   m_detPermR = 1; // Record the determinant of the row permutation
00582   
00583   m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
00584   m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
00585   
00586   // Work on one 'panel' at a time. A panel is one of the following :
00587   //  (a) a relaxed supernode at the bottom of the etree, or
00588   //  (b) panel_size contiguous columns, <panel_size> defined by the user
00589   Index jcol; 
00590   IndexVector panel_histo(n);
00591   Index pivrow; // Pivotal row number in the original row matrix
00592   Index nseg1; // Number of segments in U-column above panel row jcol
00593   Index nseg; // Number of segments in each U-column 
00594   Index irep; 
00595   Index i, k, jj; 
00596   for (jcol = 0; jcol < n; )
00597   {
00598     // Adjust panel size so that a panel won't overlap with the next relaxed snode. 
00599     Index panel_size = m_perfv.panel_size; // upper bound on panel width
00600     for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
00601     {
00602       if (relax_end(k) != emptyIdxLU) 
00603       {
00604         panel_size = k - jcol; 
00605         break; 
00606       }
00607     }
00608     if (k == n) 
00609       panel_size = n - jcol; 
00610       
00611     // Symbolic outer factorization on a panel of columns 
00612     Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu); 
00613     
00614     // Numeric sup-panel updates in topological order 
00615     Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu); 
00616     
00617     // Sparse LU within the panel, and below the panel diagonal 
00618     for ( jj = jcol; jj< jcol + panel_size; jj++) 
00619     {
00620       k = (jj - jcol) * m; // Column index for w-wide arrays 
00621       
00622       nseg = nseg1; // begin after all the panel segments
00623       //Depth-first-search for the current column
00624       VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
00625       VectorBlock<IndexVector> repfnz_k(repfnz, k, m); 
00626       info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu); 
00627       if ( info ) 
00628       {
00629         m_lastError =  "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
00630         m_info = NumericalIssue; 
00631         m_factorizationIsOk = false; 
00632         return; 
00633       }
00634       // Numeric updates to this column 
00635       VectorBlock<ScalarVector> dense_k(dense, k, m); 
00636       VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1); 
00637       info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu); 
00638       if ( info ) 
00639       {
00640         m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
00641         m_info = NumericalIssue; 
00642         m_factorizationIsOk = false; 
00643         return; 
00644       }
00645       
00646       // Copy the U-segments to ucol(*)
00647       info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu); 
00648       if ( info ) 
00649       {
00650         m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
00651         m_info = NumericalIssue; 
00652         m_factorizationIsOk = false; 
00653         return; 
00654       }
00655       
00656       // Form the L-segment 
00657       info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
00658       if ( info ) 
00659       {
00660         m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
00661         std::ostringstream returnInfo;
00662         returnInfo << info; 
00663         m_lastError += returnInfo.str();
00664         m_info = NumericalIssue; 
00665         m_factorizationIsOk = false; 
00666         return; 
00667       }
00668       
00669       // Update the determinant of the row permutation matrix
00670       // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
00671       if (pivrow != jj) m_detPermR = -m_detPermR;
00672 
00673       // Prune columns (0:jj-1) using column jj
00674       Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu); 
00675       
00676       // Reset repfnz for this column 
00677       for (i = 0; i < nseg; i++)
00678       {
00679         irep = segrep(i); 
00680         repfnz_k(irep) = emptyIdxLU; 
00681       }
00682     } // end SparseLU within the panel  
00683     jcol += panel_size;  // Move to the next panel
00684   } // end for -- end elimination 
00685   
00686   m_detPermR = m_perm_r.determinant();
00687   m_detPermC = m_perm_c.determinant();
00688   
00689   // Count the number of nonzeros in factors 
00690   Base::countnz(n, m_nnzL, m_nnzU, m_glu); 
00691   // Apply permutation  to the L subscripts 
00692   Base::fixupL(n, m_perm_r.indices(), m_glu);
00693   
00694   // Create supernode matrix L 
00695   m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup); 
00696   // Create the column major upper sparse matrix  U; 
00697   new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, Index> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() ); 
00698   
00699   m_info = Success;
00700   m_factorizationIsOk = true;
00701 }
00702 
00703 template<typename MappedSupernodalType>
00704 struct SparseLUMatrixLReturnType : internal::no_assignment_operator
00705 {
00706   typedef typename MappedSupernodalType::Index Index;
00707   typedef typename MappedSupernodalType::Scalar Scalar;
00708   SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
00709   { }
00710   Index rows() { return m_mapL.rows(); }
00711   Index cols() { return m_mapL.cols(); }
00712   template<typename Dest>
00713   void solveInPlace( MatrixBase<Dest> &X) const
00714   {
00715     m_mapL.solveInPlace(X);
00716   }
00717   const MappedSupernodalType& m_mapL;
00718 };
00719 
00720 template<typename MatrixLType, typename MatrixUType>
00721 struct SparseLUMatrixUReturnType : internal::no_assignment_operator
00722 {
00723   typedef typename MatrixLType::Index Index;
00724   typedef typename MatrixLType::Scalar Scalar;
00725   SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
00726   : m_mapL(mapL),m_mapU(mapU)
00727   { }
00728   Index rows() { return m_mapL.rows(); }
00729   Index cols() { return m_mapL.cols(); }
00730 
00731   template<typename Dest>   void solveInPlace(MatrixBase<Dest> &X) const
00732   {
00733     Index nrhs = X.cols();
00734     Index n = X.rows();
00735     // Backward solve with U
00736     for (Index k = m_mapL.nsuper(); k >= 0; k--)
00737     {
00738       Index fsupc = m_mapL.supToCol()[k];
00739       Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
00740       Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
00741       Index luptr = m_mapL.colIndexPtr()[fsupc];
00742 
00743       if (nsupc == 1)
00744       {
00745         for (Index j = 0; j < nrhs; j++)
00746         {
00747           X(fsupc, j) /= m_mapL.valuePtr()[luptr];
00748         }
00749       }
00750       else
00751       {
00752         Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
00753         Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
00754         U = A.template triangularView<Upper>().solve(U);
00755       }
00756 
00757       for (Index j = 0; j < nrhs; ++j)
00758       {
00759         for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
00760         {
00761           typename MatrixUType::InnerIterator it(m_mapU, jcol);
00762           for ( ; it; ++it)
00763           {
00764             Index irow = it.index();
00765             X(irow, j) -= X(jcol, j) * it.value();
00766           }
00767         }
00768       }
00769     } // End For U-solve
00770   }
00771   const MatrixLType& m_mapL;
00772   const MatrixUType& m_mapU;
00773 };
00774 
00775 namespace internal {
00776   
00777 template<typename _MatrixType, typename Derived, typename Rhs>
00778 struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
00779   : solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
00780 {
00781   typedef SparseLU<_MatrixType,Derived> Dec;
00782   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00783 
00784   template<typename Dest> void evalTo(Dest& dst) const
00785   {
00786     dec()._solve(rhs(),dst);
00787   }
00788 };
00789 
00790 template<typename _MatrixType, typename Derived, typename Rhs>
00791 struct sparse_solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
00792   : sparse_solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
00793 {
00794   typedef SparseLU<_MatrixType,Derived> Dec;
00795   EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
00796 
00797   template<typename Dest> void evalTo(Dest& dst) const
00798   {
00799     this->defaultEvalTo(dst);
00800   }
00801 };
00802 } // end namespace internal
00803 
00804 } // End namespace Eigen 
00805 
00806 #endif


shape_reconstruction
Author(s): Roberto Martín-Martín
autogenerated on Sat Jun 8 2019 18:36:07