Go to the documentation of this file.00001
00002 #define WANT_STREAM
00003
00004 #define WANT_MATH
00005
00006 #include "newmat.h"
00007
00008 #include "tmt.h"
00009
00010 #ifdef use_namespace
00011 using namespace NEWMAT;
00012 #endif
00013
00014
00015
00016
00017
00018
00019 void trymatm()
00020 {
00021 Tracer et("Twenty second test of Matrix package");
00022 Tracer::PrintTrace();
00023
00024 {
00025 Tracer et1("Stage 1");
00026
00027
00028 Matrix A(2,3);
00029 A << 3 << 5 << 2
00030 << 4 << 1 << 6;
00031
00032 Matrix B(4,3);
00033 B << 7 << 2 << 9
00034 << 1 << 3 << 6
00035 << 4 << 10 << 5
00036 << 11 << 8 << 12;
00037
00038 Matrix C(8, 9);
00039
00040 C.Row(1) << 21 << 6 << 27 << 35 << 10 << 45 << 14 << 4 << 18;
00041 C.Row(2) << 3 << 9 << 18 << 5 << 15 << 30 << 2 << 6 << 12;
00042 C.Row(3) << 12 << 30 << 15 << 20 << 50 << 25 << 8 << 20 << 10;
00043 C.Row(4) << 33 << 24 << 36 << 55 << 40 << 60 << 22 << 16 << 24;
00044
00045 C.Row(5) << 28 << 8 << 36 << 7 << 2 << 9 << 42 << 12 << 54;
00046 C.Row(6) << 4 << 12 << 24 << 1 << 3 << 6 << 6 << 18 << 36;
00047 C.Row(7) << 16 << 40 << 20 << 4 << 10 << 5 << 24 << 60 << 30;
00048 C.Row(8) << 44 << 32 << 48 << 11 << 8 << 12 << 66 << 48 << 72;
00049
00050 Matrix AB = KP(A,B) - C; Print(AB);
00051
00052 IdentityMatrix I1(10); IdentityMatrix I2(15); I2 *= 2;
00053 DiagonalMatrix D = KP(I1, I2) - IdentityMatrix(150) * 2;
00054 Print(D);
00055 }
00056
00057 {
00058 Tracer et1("Stage 2");
00059
00060 UpperTriangularMatrix A(3);
00061 A << 3 << 8 << 5
00062 << 7 << 2
00063 << 4;
00064 UpperTriangularMatrix B(4);
00065 B << 4 << 1 << 7 << 2
00066 << 3 << 9 << 8
00067 << 1 << 5
00068 << 6;
00069
00070 UpperTriangularMatrix C(12);
00071
00072 C.Row(1) <<12<< 3<<21<< 6 <<32<< 8<<56<<16 <<20<< 5<<35<<10;
00073 C.Row(2) << 9<<27<<24 << 0<<24<<72<<64 << 0<<15<<45<<40;
00074 C.Row(3) << 3<<15 << 0<< 0<< 8<<40 << 0<< 0<< 5<<25;
00075 C.Row(4) <<18 << 0<< 0<< 0<<48 << 0<< 0<< 0<<30;
00076
00077 C.Row(5) <<28<< 7<<49<<14 << 8<< 2<<14<< 4;
00078 C.Row(6) <<21<<63<<56 << 0<< 6<<18<<16;
00079 C.Row(7) << 7<<35 << 0<< 0<< 2<<10;
00080 C.Row(8) <<42 << 0<< 0<< 0<<12;
00081
00082 C.Row(9) <<16<< 4<<28<< 8;
00083 C.Row(10) <<12<<36<<32;
00084 C.Row(11) << 4<<20;
00085 C.Row(12) <<24;
00086
00087
00088 UpperTriangularMatrix AB = KP(A,B) - C; Print(AB);
00089
00090 LowerTriangularMatrix BT = B.t(); Matrix N(12,12);
00091
00092 N.Row(1) <<12 << 0<< 0<< 0 <<32<< 0<< 0<< 0 <<20<< 0<< 0<< 0;
00093 N.Row(2) << 3 << 9<< 0<< 0 << 8<<24<< 0<< 0 << 5<<15<< 0<< 0;
00094 N.Row(3) <<21 <<27<< 3<< 0 <<56<<72<< 8<< 0 <<35<<45<< 5<< 0;
00095 N.Row(4) << 6 <<24<<15<<18 <<16<<64<<40<<48 <<10<<40<<25<<30;
00096
00097 N.Row(5) << 0 << 0<< 0<< 0 <<28<< 0<< 0<< 0 << 8<< 0<< 0<< 0;
00098 N.Row(6) << 0 << 0<< 0<< 0 << 7<<21<< 0<< 0 << 2<< 6<< 0<< 0;
00099 N.Row(7) << 0 << 0<< 0<< 0 <<49<<63<< 7<< 0 <<14<<18<< 2<< 0;
00100 N.Row(8) << 0 << 0<< 0<< 0 <<14<<56<<35<<42 << 4<<16<<10<<12;
00101
00102 N.Row(9) << 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 <<16<< 0<< 0<< 0;
00103 N.Row(10)<< 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 << 4<<12<< 0<< 0;
00104 N.Row(11)<< 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 <<28<<36<< 4<< 0;
00105 N.Row(12)<< 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 << 8<<32<<20<<24;
00106
00107 Matrix N1 = KP(A, BT); N1 -= N; Print(N1);
00108 AB << KP(A, BT); AB << (AB - N); Print(AB);
00109 BT << KP(A, BT); BT << (BT - N); Print(BT);
00110
00111 LowerTriangularMatrix AT = A.t();
00112 N1 = KP(AT, B); N1 -= N.t(); Print(N1);
00113 AB << KP(AT, B); AB << (AB - N.t()); Print(AB);
00114 BT << KP(AT, B); BT << (BT - N.t()); Print(BT);
00115 }
00116
00117 {
00118 Tracer et1("Stage 3");
00119
00120 BandMatrix BMA(6,2,3);
00121 BMA.Row(1) << 5.25 << 4.75 << 2.25 << 1.75;
00122 BMA.Row(2) << 1.25 << 9.75 << 4.50 << 0.25 << 1.50;
00123 BMA.Row(3) << 7.75 << 1.50 << 3.00 << 4.25 << 0.50 << 5.50;
00124 BMA.Row(4) << 2.75 << 9.00 << 8.00 << 3.25 << 3.50;
00125 BMA.Row(5) << 8.75 << 6.25 << 5.00 << 5.75;
00126 BMA.Row(6) << 3.75 << 6.75 << 6.00;
00127
00128 Matrix A = BMA;
00129
00130 BandMatrix BMB(4,2,1);
00131 BMB.Row(1) << 4.5 << 9.5;
00132 BMB.Row(2) << 1.5 << 6.0 << 2.0;
00133 BMB.Row(3) << 0.5 << 2.5 << 8.5 << 7.5;
00134 BMB.Row(4) << 3.0 << 4.0 << 6.5;
00135
00136 Matrix B = BMB;
00137
00138 BandMatrix BMC = KP(BMA, BMB);
00139 BandMatrix BMC1(24,11,15);
00140 BMC1.Inject(Matrix(KP(BMA, B)));
00141 Matrix C2 = KP(A, BMB);
00142 Matrix C = KP(A, B);
00143
00144 Matrix M = C - BMC; Print(M);
00145 M = C - BMC1; Print(M);
00146 M = C - C2; Print(M);
00147
00148 RowVector X(4);
00149 X(1) = BMC.BandWidth().Lower() - 10;
00150 X(2) = BMC.BandWidth().Upper() - 13;
00151 X(3) = BMC1.BandWidth().Lower() - 11;
00152 X(4) = BMC1.BandWidth().Upper() - 15;
00153 Print(X);
00154
00155 UpperTriangularMatrix UT; UT << KP(BMA, BMB);
00156 UpperTriangularMatrix UT1; UT1 << (C - UT); Print(UT1);
00157 LowerTriangularMatrix LT; LT << KP(BMA, BMB);
00158 LowerTriangularMatrix LT1; LT1 << (C - LT); Print(LT1);
00159 }
00160
00161 {
00162 Tracer et1("Stage 4");
00163
00164 SymmetricMatrix SM1(4);
00165 SM1.Row(1) << 2;
00166 SM1.Row(2) << 4 << 5;
00167 SM1.Row(3) << 9 << 2 << 1;
00168 SM1.Row(4) << 3 << 6 << 8 << 2;
00169
00170 SymmetricMatrix SM2(3);
00171 SM2.Row(1) << 3;
00172 SM2.Row(2) << -7 << -6;
00173 SM2.Row(3) << 4 << -2 << -1;
00174
00175 SymmetricMatrix SM = KP(SM1, SM2);
00176 Matrix M1 = SM1; Matrix M2 = SM2;
00177 Matrix M = KP(SM1, SM2); M -= SM; Print(M);
00178 M = KP(SM1, SM2) - SM; Print(M);
00179 M = KP(M1, SM2) - SM; Print(M);
00180 M = KP(SM1, M2) - SM; Print(M);
00181 M = KP(M1, M2); M -= SM; Print(M);
00182 }
00183
00184 {
00185 Tracer et1("Stage 5");
00186
00187 Matrix A(2,3);
00188 A << 3 << 5 << 2
00189 << 4 << 1 << 6;
00190
00191 Matrix B(3,4);
00192 B << 7 << 2 << 9 << 11
00193 << 1 << 3 << 6 << 8
00194 << 4 << 10 << 5 << 12;
00195
00196 RowVector C(2); C << 3 << 7;
00197 ColumnVector D(4); D << 0 << 5 << 13 << 11;
00198
00199 Matrix M = KP(C * A, B * D) - KP(C, B) * KP(A, D); Print(M);
00200 }
00201
00202 {
00203 Tracer et1("Stage 6");
00204
00205 RowVector A(3), B(5), C(15);
00206 A << 5 << 2 << 4;
00207 B << 3 << 2 << 0 << 1 << 6;
00208 C << 15 << 10 << 0 << 5 << 30
00209 << 6 << 4 << 0 << 2 << 12
00210 << 12 << 8 << 0 << 4 << 24;
00211 Matrix N = KP(A, B) - C; Print(N);
00212 N = KP(A.t(), B.t()) - C.t(); Print(N);
00213 N = KP(A.AsDiagonal(), B.AsDiagonal()) - C.AsDiagonal(); Print(N);
00214 }
00215
00216 }
00217
00218
00219
00220
00221
00222