00001
00002
00003
00004
00005 #include "include.h"
00006 #include "newmat.h"
00007
00008 #include "tmt.h"
00009
00010 #ifdef use_namespace
00011 using namespace NEWMAT;
00012 #endif
00013
00014
00015
00016
00017 void trymatc()
00018 {
00019
00020 Tracer et("Twelfth test of Matrix package");
00021 Tracer::PrintTrace();
00022 DiagonalMatrix D(15); D=1.5;
00023 Matrix A(15,15);
00024 int i,j;
00025 for (i=1;i<=15;i++) for (j=1;j<=15;j++) A(i,j)=i*i+j-150;
00026 { A = A + D; }
00027 ColumnVector B(15);
00028 for (i=1;i<=15;i++) B(i)=i+i*i-150.0;
00029 {
00030 Tracer et1("Stage 1");
00031 ColumnVector B1=B;
00032 B=(A*2.0).i() * B1;
00033 Matrix X = A*B-B1/2.0;
00034 Clean(X, 0.000000001); Print(X);
00035 A.ReSize(3,5);
00036 for (i=1; i<=3; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j;
00037
00038 B = A.AsColumn()+10000;
00039 RowVector R = (A+10000).AsColumn().t();
00040 Print( RowVector(R-B.t()) );
00041 }
00042
00043 {
00044 Tracer et1("Stage 2");
00045 B = A.AsColumn()+10000;
00046 Matrix XR = (A+10000).AsMatrix(15,1).t();
00047 Print( RowVector(XR-B.t()) );
00048 }
00049
00050 {
00051 Tracer et1("Stage 3");
00052 B = (A.AsMatrix(15,1)+A.AsColumn())/2.0+10000;
00053 Matrix MR = (A+10000).AsColumn().t();
00054 Print( RowVector(MR-B.t()) );
00055
00056 B = (A.AsMatrix(15,1)+A.AsColumn())/2.0;
00057 MR = A.AsColumn().t();
00058 Print( RowVector(MR-B.t()) );
00059 }
00060
00061 {
00062 Tracer et1("Stage 4");
00063 B = (A.AsMatrix(15,1)+A.AsColumn())/2.0;
00064 RowVector R = A.AsColumn().t();
00065 Print( RowVector(R-B.t()) );
00066 }
00067
00068 {
00069 Tracer et1("Stage 5");
00070 RowVector R = (A.AsColumn()-5000).t();
00071 B = ((R.t()+10000) - A.AsColumn())-5000;
00072 Print( RowVector(B.t()) );
00073 }
00074
00075 {
00076 Tracer et1("Stage 6");
00077 B = A.AsColumn(); ColumnVector B1 = (A+10000).AsColumn() - 10000;
00078 Print(ColumnVector(B1-B));
00079 }
00080
00081 {
00082 Tracer et1("Stage 7");
00083 Matrix X = B.AsMatrix(3,5); Print(Matrix(X-A));
00084 for (i=1; i<=3; i++) for (j=1; j<=5; j++) B(5*(i-1)+j) -= i+100*j;
00085 Print(B);
00086 }
00087
00088 {
00089 Tracer et1("Stage 8");
00090 A.ReSize(7,7); D.ReSize(7);
00091 for (i=1; i<=7; i++) for (j=1; j<=7; j++) A(i,j) = i*j*j;
00092 for (i=1; i<=7; i++) D(i,i) = i;
00093 UpperTriangularMatrix U; U << A;
00094 Matrix X = A; for (i=1; i<=7; i++) X(i,i) = i;
00095 A.Inject(D); Print(Matrix(X-A));
00096 X = U; U.Inject(D); A = U; for (i=1; i<=7; i++) X(i,i) = i;
00097 Print(Matrix(X-A));
00098 }
00099
00100 {
00101 Tracer et1("Stage 9");
00102 A.ReSize(7,5);
00103 for (i=1; i<=7; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j;
00104 Matrix Y = A; Y = Y - ((const Matrix&)A); Print(Y);
00105 Matrix X = A;
00106 Y = A; Y = ((const Matrix&)X) - A; Print(Y); Y = 0.0;
00107 Y = ((const Matrix&)X) - ((const Matrix&)A); Print(Y);
00108 }
00109
00110 {
00111 Tracer et1("Stage 10");
00112
00113 UpperTriangularMatrix U(20);
00114 for (i=1; i<=20; i++) for (j=i; j<=20; j++) U(i,j)=100 * i + j;
00115 UpperTriangularMatrix V = U.SymSubMatrix(1,5);
00116 UpperTriangularMatrix U1 = U;
00117 U1.SubMatrix(4,8,5,9) /= 2;
00118 U1.SubMatrix(4,8,5,9) += 388 * V;
00119 U1.SubMatrix(4,8,5,9) *= 2;
00120 U1.SubMatrix(4,8,5,9) += V;
00121 U1 -= U; UpperTriangularMatrix U2 = U1;
00122 U1 << U1.SubMatrix(4,8,5,9);
00123 U2.SubMatrix(4,8,5,9) -= U1; Print(U2);
00124 U1 -= (777*V); Print(U1);
00125
00126 U1 = U; U1.SubMatrix(4,8,5,9) -= U.SymSubMatrix(1,5);
00127 U1 -= U; U2 = U1; U1 << U1.SubMatrix(4,8,5,9);
00128 U2.SubMatrix(4,8,5,9) -= U1; Print(U2);
00129 U1 += V; Print(U1);
00130
00131 U1 = U;
00132 U1.SubMatrix(3,10,15,19) += 29;
00133 U1 -= U;
00134 Matrix X = U1.SubMatrix(3,10,15,19); X -= 29; Print(X);
00135 U1.SubMatrix(3,10,15,19) *= 0; Print(U1);
00136
00137 LowerTriangularMatrix L = U.t();
00138 LowerTriangularMatrix M = L.SymSubMatrix(1,5);
00139 LowerTriangularMatrix L1 = L;
00140 L1.SubMatrix(5,9,4,8) /= 2;
00141 L1.SubMatrix(5,9,4,8) += 388 * M;
00142 L1.SubMatrix(5,9,4,8) *= 2;
00143 L1.SubMatrix(5,9,4,8) += M;
00144 L1 -= L; LowerTriangularMatrix L2 = L1;
00145 L1 << L1.SubMatrix(5,9,4,8);
00146 L2.SubMatrix(5,9,4,8) -= L1; Print(L2);
00147 L1 -= (777*M); Print(L1);
00148
00149 L1 = L; L1.SubMatrix(5,9,4,8) -= L.SymSubMatrix(1,5);
00150 L1 -= L; L2 =L1; L1 << L1.SubMatrix(5,9,4,8);
00151 L2.SubMatrix(5,9,4,8) -= L1; Print(L2);
00152 L1 += M; Print(L1);
00153
00154 L1 = L;
00155 L1.SubMatrix(15,19,3,10) -= 29;
00156 L1 -= L;
00157 X = L1.SubMatrix(15,19,3,10); X += 29; Print(X);
00158 L1.SubMatrix(15,19,3,10) *= 0; Print(L1);
00159 }
00160
00161 {
00162 Tracer et1("Stage 11");
00163
00164 Matrix M(20,30);
00165 for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j;
00166 Matrix M1 = M;
00167
00168 for (j=1; j<=30; j++)
00169 { ColumnVector CV = 3 * M1.Column(j); M.Column(j) += CV; }
00170 for (i=1; i<=20; i++)
00171 { RowVector RV = 5 * M1.Row(i); M.Row(i) -= RV; }
00172
00173 M += M1; Print(M);
00174
00175 }
00176
00177 {
00178 Tracer et1("Stage 12");
00179
00180 Matrix M(20,30);
00181 for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j;
00182 Matrix M1 = M;
00183 M.Release();
00184 Matrix M2 = M;
00185 Matrix X = M; Print(X);
00186 X = M1 - M2; Print(X);
00187
00188 #ifndef DONT_DO_NRIC
00189 nricMatrix N = M1;
00190 nricMatrix N1 = N;
00191 N.Release();
00192 nricMatrix N2 = N;
00193 nricMatrix Y = N; Print(Y);
00194 Y = N1 - N2; Print(Y);
00195 #endif
00196
00197 }
00198
00199
00200 }