svd.cc
Go to the documentation of this file.
00001 //$$svd.cpp                           singular value decomposition
00002 
00003 // Copyright (C) 1991,2,3,4,5: R B Davies
00004 // Updated 17 July, 1995
00005 
00006 #define WANT_MATH
00007 
00008 #include "include.h"
00009 #include "newmatap.h"
00010 #include "newmatrm.h"
00011 #include "precisio.h"
00012 
00013 #ifdef use_namespace
00014 namespace NEWMAT {
00015 #endif
00016 
00017 #ifdef DO_REPORT
00018 #define REPORT { static ExeCounter ExeCount(__LINE__,15); ++ExeCount; }
00019 #else
00020 #define REPORT {}
00021 #endif
00022 
00023 
00024 static Real pythag(Real f, Real g, Real& c, Real& s)
00025 // return z=sqrt(f*f+g*g), c=f/z, s=g/z
00026 // set c=1,s=0 if z==0
00027 // avoid floating point overflow or divide by zero
00028 {
00029    if (f==0 && g==0) { c=1.0; s=0.0; return 0.0; }
00030    Real af = f>=0 ? f : -f;
00031    Real ag = g>=0 ? g : -g;
00032    if (ag<af)
00033    {
00034       REPORT
00035       Real h = g/f; Real sq = sqrt(1.0+h*h);
00036       if (f<0) sq = -sq;           // make return value non-negative
00037       c = 1.0/sq; s = h/sq; return sq*f;
00038    }
00039    else
00040    {
00041       REPORT
00042       Real h = f/g; Real sq = sqrt(1.0+h*h);
00043       if (g<0) sq = -sq;
00044       s = 1.0/sq; c = h/sq; return sq*g;
00045    }
00046 }
00047 
00048 
00049 void SVD(const Matrix& A, DiagonalMatrix& Q, Matrix& U, Matrix& V,
00050    bool withU, bool withV)
00051 // from Wilkinson and Reinsch: "Handbook of Automatic Computation"
00052 {
00053    REPORT
00054    Tracer trace("SVD");
00055    Real eps = FloatingPointPrecision::Epsilon();
00056    Real tol = FloatingPointPrecision::Minimum()/eps;
00057 
00058    int m = A.Nrows(); int n = A.Ncols();
00059    if (m<n)
00060       Throw(ProgramException("Want no. Rows >= no. Cols", A));
00061    if (withV && &U == &V)
00062       Throw(ProgramException("Need different matrices for U and V", U, V));
00063    U = A; Real g = 0.0; Real f,h; Real x = 0.0; int i;
00064    RowVector E(n); RectMatrixRow EI(E,0); Q.ReSize(n);
00065    RectMatrixCol UCI(U,0); RectMatrixRow URI(U,0,1,n-1);
00066 
00067    if (n) for (i=0;;)
00068    {
00069       EI.First() = g; Real ei = g; EI.Right(); Real s = UCI.SumSquare();
00070       if (s<tol) { REPORT Q.element(i) = 0.0; }
00071       else
00072       {
00073          REPORT
00074          f = UCI.First(); g = -sign(sqrt(s), f); h = f*g-s; UCI.First() = f-g;
00075          Q.element(i) = g; RectMatrixCol UCJ = UCI; int j=n-i;
00076          while (--j) { UCJ.Right(); UCJ.AddScaled(UCI, (UCI*UCJ)/h); }
00077       }
00078 
00079       s = URI.SumSquare();
00080       if (s<tol) { REPORT g = 0.0; }
00081       else
00082       {
00083          REPORT
00084          f = URI.First(); g = -sign(sqrt(s), f); URI.First() = f-g;
00085          EI.Divide(URI,f*g-s); RectMatrixRow URJ = URI; int j=m-i;
00086          while (--j) { URJ.Down(); URJ.AddScaled(EI, URI*URJ); }
00087       }
00088 
00089       Real y = fabs(Q.element(i)) + fabs(ei); if (x<y) { REPORT x = y; }
00090       if (++i == n) { REPORT break; }
00091       UCI.DownDiag(); URI.DownDiag();
00092    }
00093 
00094    if (withV)
00095    {
00096       REPORT
00097       V.ReSize(n,n); V = 0.0; RectMatrixCol VCI(V,n-1,n-1,1);
00098       if (n) { VCI.First() = 1.0; g=E.element(n-1); if (n!=1) URI.UpDiag(); }
00099       for (i=n-2; i>=0; i--)
00100       {
00101          VCI.Left();
00102          if (g!=0.0)
00103          {
00104             VCI.Divide(URI, URI.First()*g); int j = n-i;
00105             RectMatrixCol VCJ = VCI;
00106             while (--j) { VCJ.Right(); VCJ.AddScaled( VCI, (URI*VCJ) ); }
00107          }
00108          VCI.Zero(); VCI.Up(); VCI.First() = 1.0; g=E.element(i);
00109          if (i==0) break;
00110          URI.UpDiag();
00111       }
00112    }
00113 
00114    if (withU)
00115    {
00116       REPORT
00117       for (i=n-1; i>=0; i--)
00118       {
00119          g = Q.element(i); URI.Reset(U,i,i+1,n-i-1); URI.Zero();
00120          if (g!=0.0)
00121          {
00122             h=UCI.First()*g; int j=n-i; RectMatrixCol UCJ = UCI;
00123             while (--j)
00124             {
00125                UCJ.Right(); UCI.Down(); UCJ.Down(); Real s = UCI*UCJ;
00126                UCI.Up(); UCJ.Up(); UCJ.AddScaled(UCI,s/h);
00127             }
00128             UCI.Divide(g);
00129          }
00130          else UCI.Zero();
00131          UCI.First() += 1.0;
00132          if (i==0) break;
00133          UCI.UpDiag();
00134       }
00135    }
00136 
00137    eps *= x;
00138    for (int k=n-1; k>=0; k--)
00139    {
00140       Real z = -FloatingPointPrecision::Maximum(); // to keep Gnu happy
00141       Real y; int limit = 50; int l = 0;
00142       while (limit--)
00143       {
00144          Real c, s; int i; int l1=k; bool tfc=false;
00145          for (l=k; l>=0; l--)
00146          {
00147 //          if (fabs(E.element(l))<=eps) goto test_f_convergence;
00148             if (fabs(E.element(l))<=eps) { REPORT tfc=true; break; }
00149             if (fabs(Q.element(l-1))<=eps) { REPORT l1=l; break; }
00150             REPORT
00151          }
00152          if (!tfc)
00153          {
00154             REPORT
00155             l=l1; l1=l-1; s = -1.0; c = 0.0;
00156             for (i=l; i<=k; i++)
00157             {
00158                f = - s * E.element(i); E.element(i) *= c;
00159 //             if (fabs(f)<=eps) goto test_f_convergence;
00160                if (fabs(f)<=eps) { REPORT break; }
00161                g = Q.element(i); h = pythag(g,f,c,s); Q.element(i) = h;
00162                if (withU)
00163                {
00164                   REPORT
00165                   RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,l1);
00166                   ComplexScale(UCJ, UCI, c, s);
00167                }
00168             }
00169          }
00170 //       test_f_convergence: z = Q.element(k); if (l==k) goto convergence;
00171          z = Q.element(k);  if (l==k) { REPORT break; }
00172 
00173          x = Q.element(l); y = Q.element(k-1);
00174          g = E.element(k-1); h = E.element(k);
00175          f = ((y-z)*(y+z) + (g-h)*(g+h)) / (2*h*y);
00176          if (f>1)         { REPORT g = f * sqrt(1 + square(1/f)); }
00177          else if (f<-1)   { REPORT g = -f * sqrt(1 + square(1/f)); }
00178          else             { REPORT g = sqrt(f*f + 1); }
00179             { REPORT f = ((x-z)*(x+z) + h*(y / ((f<0.0) ? f-g : f+g)-h)) / x; }
00180 
00181          c = 1.0; s = 1.0;
00182          for (i=l+1; i<=k; i++)
00183          {
00184             g = E.element(i); y = Q.element(i); h = s*g; g *= c;
00185             z = pythag(f,h,c,s); E.element(i-1) = z;
00186             f = x*c + g*s; g = -x*s + g*c; h = y*s; y *= c;
00187             if (withV)
00188             {
00189                REPORT
00190                RectMatrixCol VCI(V,i); RectMatrixCol VCJ(V,i-1);
00191                ComplexScale(VCI, VCJ, c, s);
00192             }
00193             z = pythag(f,h,c,s); Q.element(i-1) = z;
00194             f = c*g + s*y; x = -s*g + c*y;
00195             if (withU)
00196             {
00197                REPORT
00198                RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,i-1);
00199                ComplexScale(UCI, UCJ, c, s);
00200             }
00201          }
00202          E.element(l) = 0.0; E.element(k) = f; Q.element(k) = x;
00203       }
00204       if (l!=k) { Throw(ConvergenceException(A)); }
00205 // convergence:
00206       if (z < 0.0)
00207       {
00208          REPORT
00209          Q.element(k) = -z;
00210          if (withV) { RectMatrixCol VCI(V,k); VCI.Negate(); }
00211       }
00212    }
00213    if (withU & withV) SortSV(Q, U, V);
00214    else if (withU) SortSV(Q, U);
00215    else if (withV) SortSV(Q, V);
00216    else SortDescending(Q);
00217 }
00218 
00219 void SVD(const Matrix& A, DiagonalMatrix& D)
00220 { REPORT Matrix U; SVD(A, D, U, U, false, false); }
00221 
00222 
00223 
00224 #ifdef use_namespace
00225 }
00226 #endif
00227 


rl_agent
Author(s): Todd Hester
autogenerated on Thu Jun 6 2019 22:00:13