newfft.cc
Go to the documentation of this file.
00001 //$ newfft.cpp
00002 
00003 // This is originally by Sande and Gentleman in 1967! I have translated from
00004 // Fortran into C and a little bit of C++.
00005 
00006 // It takes about twice as long as fftw
00007 // (http://theory.lcs.mit.edu/~fftw/homepage.html)
00008 // but is much shorter than fftw  and so despite its age
00009 // might represent a reasonable
00010 // compromise between speed and complexity.
00011 // If you really need the speed get fftw.
00012 
00013 
00014 //    THIS SUBROUTINE WAS WRITTEN BY G.SANDE OF PRINCETON UNIVERSITY AND
00015 //    W.M.GENTLMAN OF THE BELL TELEPHONE LAB.  IT WAS BROUGHT TO LONDON
00016 //    BY DR. M.D. GODFREY AT THE IMPERIAL COLLEGE AND WAS ADAPTED FOR
00017 //    BURROUGHS 6700 BY D. R. BRILLINGER AND J. PEMBERTON
00018 //    IT REPRESENTS THE STATE OF THE ART OF COMPUTING COMPLETE FINITE
00019 //    DISCRETE FOURIER TRANSFORMS AS OF NOV.1967.
00020 //    OTHER PROGRAMS REQUIRED.
00021 //                                 ONLY THOSE SUBROUTINES INCLUDED HERE.
00022 //                      USAGE.
00023 //       CALL AR1DFT(N,X,Y)
00024 //            WHERE  N IS THE NUMBER OF POINTS IN THE SEQUENCE .
00025 //                   X - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE REAL
00026 //                       PART OF THE SEQUENCE.
00027 //                   Y - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE
00028 //                       IMAGINARY PART OF THE SEQUENCE.
00029 //    THE TRANSFORM IS RETURNED IN X AND Y.
00030 //            METHOD
00031 //               FOR A GENERAL DISCUSSION OF THESE TRANSFORMS AND OF
00032 //    THE FAST METHOD FOR COMPUTING THEM, SEE GENTLEMAN AND SANDE,
00033 //    @FAST FOURIER TRANSFORMS - FOR FUN AND PROFIT,@ 1966 FALL JOINT
00034 //    COMPUTER CONFERENCE.
00035 //    THIS PROGRAM COMPUTES THIS FOR A COMPLEX SEQUENCE Z(T) OF LENGTH
00036 //    N WHOSE ELEMENTS ARE STORED AT(X(I) , Y(I)) AND RETURNS THE
00037 //    TRANSFORM COEFFICIENTS AT (X(I), Y(I)).
00038 //        DESCRIPTION
00039 //    AR1DFT IS A HIGHLY MODULAR ROUTINE CAPABLE OF COMPUTING IN PLACE
00040 //    THE COMPLETE FINITE DISCRETE FOURIER TRANSFORM  OF A ONE-
00041 //    DIMENSIONAL SEQUENCE OF RATHER GENERAL LENGTH N.
00042 //       THE MAIN ROUTINE , AR1DFT ITSELF, FACTORS N. IT THEN CALLS ON
00043 //    ON GR 1D FT TO COMPUTE THE ACTUAL TRANSFORMS, USING THESE FACTORS.
00044 //    THIS GR 1D FT DOES, CALLING AT EACH STAGE ON THE APPROPRIATE KERN
00045 //    EL R2FTK, R4FTK, R8FTK, R16FTK, R3FTK, R5FTK, OR RPFTK TO PERFORM
00046 //    THE COMPUTATIONS FOR THIS PASS OVER THE SEQUENCE, DEPENDING ON
00047 //    WHETHER THE CORRESPONDING FACTOR IS 2, 4, 8, 16, 3, 5, OR SOME
00048 //    MORE GENERAL PRIME P. WHEN GR1DFT IS FINISHED THE TRANSFORM IS
00049 //    COMPUTED, HOWEVER, THE RESULTS ARE STORED IN "DIGITS REVERSED"
00050 //    ORDER. AR1DFT THEREFORE, CALLS UPON GR 1S FS TO SORT THEM OUT.
00051 //    TO RETURN TO THE FACTORIZATION, SINGLETON HAS POINTED OUT THAT
00052 //    THE TRANSFORMS ARE MORE EFFICIENT IF THE SAMPLE SIZE N, IS OF THE
00053 //    FORM B*A**2 AND B CONSISTS OF A SINGLE FACTOR.  IN SUCH A CASE
00054 //    IF WE PROCESS THE FACTORS IN THE ORDER ABA  THEN
00055 //    THE REORDERING CAN BE DONE AS FAST IN PLACE, AS WITH SCRATCH
00056 //    STORAGE.  BUT AS B BECOMES MORE COMPLICATED, THE COST OF THE DIGIT
00057 //    REVERSING DUE TO B PART BECOMES VERY EXPENSIVE IF WE TRY TO DO IT
00058 //    IN PLACE.  IN SUCH A CASE IT MIGHT BE BETTER TO USE EXTRA STORAGE
00059 //    A ROUTINE TO DO THIS IS, HOWEVER, NOT INCLUDED HERE.
00060 //    ANOTHER FEATURE INFLUENCING THE FACTORIZATION IS THAT FOR ANY FIXED
00061 //    FACTOR N WE CAN PREPARE A SPECIAL KERNEL WHICH WILL COMPUTE
00062 //    THAT STAGE OF THE TRANSFORM MORE EFFICIENTLY THAN WOULD A KERNEL
00063 //    FOR GENERAL FACTORS, ESPECIALLY IF THE GENERAL KERNEL HAD TO BE
00064 //    APPLIED SEVERAL TIMES. FOR EXAMPLE, FACTORS OF 4 ARE MORE
00065 //    EFFICIENT THAN FACTORS OF 2, FACTORS OF 8 MORE EFFICIENT THAN 4,ETC
00066 //    ON THE OTHER HAND DIMINISHING RETURNS RAPIDLY SET IN, ESPECIALLY
00067 //    SINCE THE LENGTH OF THE KERNEL FOR A SPECIAL CASE IS ROUGHLY
00068 //    PROPORTIONAL TO THE FACTOR IT DEALS WITH. HENCE THESE PROBABLY ARE
00069 //    ALL THE KERNELS WE WISH TO HAVE.
00070 //            RESTRICTIONS.
00071 //    AN UNFORTUNATE FEATURE OF THE SORTING PROBLEM IS THAT THE MOST
00072 //    EFFICIENT WAY TO DO IT IS WITH NESTED DO LOOPS, ONE FOR EACH
00073 //    FACTOR. THIS PUTS A RESTRICTION ON N AS TO HOW MANY FACTORS IT
00074 //    CAN HAVE.  CURRENTLY THE LIMIT IS 16, BUT THE LIMIT CAN BE READILY
00075 //    RAISED IF NECESSARY.
00076 //    A SECOND RESTRICTION OF THE PROGRAM IS THAT LOCAL STORAGE OF THE
00077 //    THE ORDER P**2 IS REQUIRED BY THE GENERAL KERNEL RPFTK, SO SOME
00078 //    LIMIT MUST BE SET ON P.  CURRENTLY THIS IS 19, BUT IT CAN BE INCRE
00079 //    INCREASED BY TRIVIAL CHANGES.
00080 //       OTHER COMMENTS.
00081 //(1) THE ROUTINE IS ADAPTED TO CHECK WHETHER A GIVEN N WILL MEET THE
00082 //    ABOVE FACTORING REQUIREMENTS AN, IF NOT, TO RETURN THE NEXT HIGHER
00083 //    NUMBER, NX, SAY, WHICH WILL MEET THESE REQUIREMENTS.
00084 //    THIS CAN BE ACCHIEVED BY   A STATEMENT OF THE FORM
00085 //            CALL FACTR(N,X,Y).
00086 //    IF A DIFFERENT N, SAY NX, IS RETURNED THEN THE TRANSFORMS COULD BE
00087 //    OBTAINED BY EXTENDING THE SIZE OF THE X-ARRAY AND Y-ARRAY TO NX,
00088 //    AND SETTING X(I) = Y(I) = 0., FOR I = N+1, NX.
00089 //(2) IF THE SEQUENCE Z IS ONLY A REAL SEQUENCE, THEN THE IMAGINARY PART
00090 //    Y(I)=0., THIS WILL RETURN THE COSINE TRANSFORM OF THE REAL SEQUENCE
00091 //    IN X, AND THE SINE TRANSFORM IN Y.
00092 
00093 
00094 #define WANT_STREAM
00095 
00096 #define WANT_MATH
00097 
00098 #include "newmatap.h"
00099 
00100 #ifdef use_namespace
00101 namespace NEWMAT {
00102 #endif
00103 
00104 #ifdef DO_REPORT
00105 #define REPORT { static ExeCounter ExeCount(__LINE__,20); ++ExeCount; }
00106 #else
00107 #define REPORT {}
00108 #endif
00109 
00110 inline Real square(Real x) { return x*x; }
00111 inline int square(int x) { return x*x; }
00112 
00113 static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM,
00114    const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM,
00115    Real* X, Real* Y);
00116 static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR,
00117    Real* X, Real* Y);
00118 static void R_P_FTK (int N, int M, int P, Real* X, Real* Y);
00119 static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1);
00120 static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1,
00121    Real* X2, Real* Y2);
00122 static void R_4_FTK (int N, int M,
00123    Real* X0, Real* Y0, Real* X1, Real* Y1,
00124    Real* X2, Real* Y2, Real* X3, Real* Y3);
00125 static void R_5_FTK (int N, int M,
00126    Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2,
00127    Real* X3, Real* Y3, Real* X4, Real* Y4);
00128 static void R_8_FTK (int N, int M,
00129    Real* X0, Real* Y0, Real* X1, Real* Y1,
00130    Real* X2, Real* Y2, Real* X3, Real* Y3,
00131    Real* X4, Real* Y4, Real* X5, Real* Y5,
00132    Real* X6, Real* Y6, Real* X7, Real* Y7);
00133 static void R_16_FTK (int N, int M,
00134    Real* X0, Real* Y0, Real* X1, Real* Y1,
00135    Real* X2, Real* Y2, Real* X3, Real* Y3,
00136    Real* X4, Real* Y4, Real* X5, Real* Y5,
00137    Real* X6, Real* Y6, Real* X7, Real* Y7,
00138    Real* X8, Real* Y8, Real* X9, Real* Y9,
00139    Real* X10, Real* Y10, Real* X11, Real* Y11,
00140    Real* X12, Real* Y12, Real* X13, Real* Y13,
00141    Real* X14, Real* Y14, Real* X15, Real* Y15);
00142 static int BitReverse(int x, int prod, int n, const SimpleIntArray& f);
00143 
00144 
00145 bool FFT_Controller::ar_1d_ft (int PTS, Real* X, Real *Y)
00146 {
00147 //    ARBITRARY RADIX ONE DIMENSIONAL FOURIER TRANSFORM
00148 
00149    REPORT
00150 
00151    int  F,J,N,NF,P,PMAX,P_SYM,P_TWO,Q,R,TWO_GRP;
00152 
00153    // NP is maximum number of squared factors allows PTS up to 2**32 at least
00154    // NQ is number of not-squared factors - increase if we increase PMAX
00155    const int NP = 16, NQ = 10;
00156    SimpleIntArray PP(NP), QQ(NQ);
00157 
00158    TWO_GRP=16; PMAX=19;
00159 
00160    // PMAX is the maximum factor size
00161    // TWO_GRP is the maximum power of 2 handled as a single factor
00162    // Doesn't take advantage of combining powers of 2 when calculating
00163    // number of factors
00164 
00165    if (PTS<=1) return true;
00166    N=PTS; P_SYM=1; F=2; P=0; Q=0;
00167 
00168    // P counts the number of squared factors
00169    // Q counts the number of the rest
00170    // R = 0 for no non-squared factors; 1 otherwise
00171 
00172    // FACTOR holds all the factors - non-squared ones in the middle
00173    //   - length is 2*P+Q
00174    // SYM also holds all the factors but with the non-squared ones
00175    //   multiplied together - length is 2*P+R
00176    // PP holds the values of the squared factors - length is P
00177    // QQ holds the values of the rest - length is Q
00178 
00179    // P_SYM holds the product of the squared factors
00180 
00181    // find the factors - load into PP and QQ
00182    while (N > 1)
00183    {
00184       bool fail = true;
00185       for (J=F; J<=PMAX; J++)
00186          if (N % J == 0) { fail = false; F=J; break; }
00187       if (fail || P >= NP || Q >= NQ) return false; // can't factor
00188       N /= F;
00189       if (N % F != 0) QQ[Q++] = F;
00190       else { N /= F; PP[P++] = F; P_SYM *= F; }
00191    }
00192 
00193    R = (Q == 0) ? 0 : 1;  // R = 0 if no not-squared factors, 1 otherwise
00194 
00195    NF = 2*P + Q;
00196    SimpleIntArray FACTOR(NF + 1), SYM(2*P + R);
00197    FACTOR[NF] = 0;                // we need this in the "combine powers of 2"
00198 
00199    // load into SYM and FACTOR
00200    for (J=0; J<P; J++)
00201       { SYM[J]=FACTOR[J]=PP[P-1-J]; FACTOR[P+Q+J]=SYM[P+R+J]=PP[J]; }
00202 
00203    if (Q>0)
00204    {
00205       REPORT
00206       for (J=0; J<Q; J++) FACTOR[P+J]=QQ[J];
00207       SYM[P]=PTS/square(P_SYM);
00208    }
00209 
00210    // combine powers of 2
00211    P_TWO = 1;
00212    for (J=0; J < NF; J++)
00213    {
00214       if (FACTOR[J]!=2) continue;
00215       P_TWO=P_TWO*2; FACTOR[J]=1;
00216       if (P_TWO<TWO_GRP && FACTOR[J+1]==2) continue;
00217       FACTOR[J]=P_TWO; P_TWO=1;
00218    }
00219 
00220    if (P==0) R=0;
00221    if (Q<=1) Q=0;
00222 
00223    // do the analysis
00224    GR_1D_FT(PTS,NF,FACTOR,X,Y);                 // the transform
00225    GR_1D_FS(PTS,2*P+R,Q,SYM,P_SYM,QQ,X,Y);      // the reshuffling
00226 
00227    return true;
00228 
00229 }
00230 
00231 static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM,
00232    const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM,
00233    Real* X, Real* Y)
00234 {
00235 //    GENERAL RADIX ONE DIMENSIONAL FOURIER SORT
00236 
00237 // PTS = number of points
00238 // N_SYM = length of SYM
00239 // N_UN_SYM = length of UN_SYM
00240 // SYM: squared factors + product of non-squared factors + squared factors
00241 // P_SYM = product of squared factors (each included only once)
00242 // UN_SYM: not-squared factors
00243 
00244    REPORT
00245 
00246    Real T;
00247    int  JJ,KK,P_UN_SYM;
00248 
00249    // I have replaced the multiple for-loop used by Sande-Gentleman code
00250    // by the following code which does not limit the number of factors
00251 
00252    if (N_SYM > 0)
00253    {
00254       REPORT
00255       SimpleIntArray U(N_SYM);
00256       for(MultiRadixCounter MRC(N_SYM, SYM, U); !MRC.Finish(); ++MRC)
00257       {
00258          if (MRC.Swap())
00259          {
00260             int P = MRC.Reverse(); int JJ = MRC.Counter(); Real T;
00261             T=X[JJ]; X[JJ]=X[P]; X[P]=T; T=Y[JJ]; Y[JJ]=Y[P]; Y[P]=T;
00262          }
00263       }
00264    }
00265 
00266    int J,JL,K,L,M,MS;
00267 
00268    // UN_SYM contains the non-squared factors
00269    // I have replaced the Sande-Gentleman code as it runs into
00270    // integer overflow problems
00271    // My code (and theirs) would be improved by using a bit array
00272    // as suggested by Van Loan
00273 
00274    if (N_UN_SYM==0) { REPORT return; }
00275    P_UN_SYM=PTS/square(P_SYM); JL=(P_UN_SYM-3)*P_SYM; MS=P_UN_SYM*P_SYM;
00276 
00277    for (J = P_SYM; J<=JL; J+=P_SYM)
00278    {
00279       K=J;
00280       do K = P_SYM * BitReverse(K / P_SYM, P_UN_SYM, N_UN_SYM, UN_SYM);
00281       while (K<J);
00282 
00283       if (K!=J)
00284       {
00285          REPORT
00286          for (L=0; L<P_SYM; L++) for (M=L; M<PTS; M+=MS)
00287          {
00288             JJ=M+J; KK=M+K;
00289             T=X[JJ]; X[JJ]=X[KK]; X[KK]=T; T=Y[JJ]; Y[JJ]=Y[KK]; Y[KK]=T;
00290          }
00291       }
00292    }
00293 
00294    return;
00295 }
00296 
00297 static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR,
00298    Real* X, Real* Y)
00299 {
00300 //    GENERAL RADIX ONE DIMENSIONAL FOURIER TRANSFORM;
00301 
00302    REPORT
00303 
00304    int  M = N;
00305 
00306    for (int i = 0; i < N_FACTOR; i++)
00307    {
00308       int P = FACTOR[i]; M /= P;
00309 
00310       switch(P)
00311       {
00312       case 1: REPORT break;
00313       case 2: REPORT R_2_FTK (N,M,X,Y,X+M,Y+M); break;
00314       case 3: REPORT R_3_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M); break;
00315       case 4: REPORT R_4_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M); break;
00316       case 5:
00317          REPORT
00318          R_5_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M,X+4*M,Y+4*M);
00319          break;
00320       case 8:
00321          REPORT
00322          R_8_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,
00323             X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M,
00324             X+6*M,Y+6*M,X+7*M,Y+7*M);
00325          break;
00326       case 16:
00327          REPORT
00328          R_16_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,
00329             X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M,
00330             X+6*M,Y+6*M,X+7*M,Y+7*M,X+8*M,Y+8*M,
00331             X+9*M,Y+9*M,X+10*M,Y+10*M,X+11*M,Y+11*M,
00332             X+12*M,Y+12*M,X+13*M,Y+13*M,X+14*M,Y+14*M,
00333             X+15*M,Y+15*M);
00334          break;
00335       default: REPORT R_P_FTK (N,M,P,X,Y); break;
00336       }
00337    }
00338 
00339 }
00340 
00341 static void R_P_FTK (int N, int M, int P, Real* X, Real* Y)
00342 //    RADIX PRIME FOURIER TRANSFORM KERNEL;
00343 // X and Y are treated as M * P matrices with Fortran storage
00344 {
00345    REPORT
00346    bool NO_FOLD,ZERO;
00347    Real ANGLE,IS,IU,RS,RU,T,TWOPI,XT,YT;
00348    int  J,JJ,K0,K,M_OVER_2,MP,PM,PP,U,V;
00349 
00350    Real AA [9][9], BB [9][9];
00351    Real A [18], B [18], C [18], S [18];
00352    Real IA [9], IB [9], RA [9], RB [9];
00353 
00354    TWOPI=8.0*atan(1.0);
00355    M_OVER_2=M/2+1; MP=M*P; PP=P/2; PM=P-1;
00356 
00357    for (U=0; U<PP; U++)
00358    {
00359       ANGLE=TWOPI*Real(U+1)/Real(P);
00360       JJ=P-U-2;
00361       A[U]=cos(ANGLE); B[U]=sin(ANGLE);
00362       A[JJ]=A[U]; B[JJ]= -B[U];
00363    }
00364 
00365    for (U=1; U<=PP; U++)
00366    {
00367       for (V=1; V<=PP; V++)
00368          { JJ=U*V-U*V/P*P; AA[V-1][U-1]=A[JJ-1]; BB[V-1][U-1]=B[JJ-1]; }
00369    }
00370 
00371    for (J=0; J<M_OVER_2; J++)
00372    {
00373       NO_FOLD = (J==0 || 2*J==M);
00374       K0=J;
00375       ANGLE=TWOPI*Real(J)/Real(MP); ZERO=ANGLE==0.0;
00376       C[0]=cos(ANGLE); S[0]=sin(ANGLE);
00377       for (U=1; U<PM; U++)
00378       {
00379          C[U]=C[U-1]*C[0]-S[U-1]*S[0];
00380          S[U]=S[U-1]*C[0]+C[U-1]*S[0];
00381       }
00382       goto L700;
00383    L500:
00384       REPORT
00385       if (NO_FOLD) { REPORT goto L1500; }
00386       REPORT
00387       NO_FOLD=true; K0=M-J;
00388       for (U=0; U<PM; U++)
00389          { T=C[U]*A[U]+S[U]*B[U]; S[U]= -S[U]*A[U]+C[U]*B[U]; C[U]=T; }
00390    L700:
00391       REPORT
00392       for (K=K0; K<N; K+=MP)
00393       {
00394          XT=X[K]; YT=Y[K];
00395          for (U=1; U<=PP; U++)
00396          {
00397             RA[U-1]=XT; IA[U-1]=YT;
00398             RB[U-1]=0.0; IB[U-1]=0.0;
00399          }
00400          for (U=1; U<=PP; U++)
00401          {
00402             JJ=P-U;
00403             RS=X[K+M*U]+X[K+M*JJ]; IS=Y[K+M*U]+Y[K+M*JJ];
00404             RU=X[K+M*U]-X[K+M*JJ]; IU=Y[K+M*U]-Y[K+M*JJ];
00405             XT=XT+RS; YT=YT+IS;
00406             for (V=0; V<PP; V++)
00407             {
00408                RA[V]=RA[V]+RS*AA[V][U-1]; IA[V]=IA[V]+IS*AA[V][U-1];
00409                RB[V]=RB[V]+RU*BB[V][U-1]; IB[V]=IB[V]+IU*BB[V][U-1];
00410             }
00411          }
00412          X[K]=XT; Y[K]=YT;
00413          for (U=1; U<=PP; U++)
00414          {
00415             if (!ZERO)
00416             {
00417                REPORT
00418                XT=RA[U-1]+IB[U-1]; YT=IA[U-1]-RB[U-1];
00419                X[K+M*U]=XT*C[U-1]+YT*S[U-1]; Y[K+M*U]=YT*C[U-1]-XT*S[U-1];
00420                JJ=P-U;
00421                XT=RA[U-1]-IB[U-1]; YT=IA[U-1]+RB[U-1];
00422                X[K+M*JJ]=XT*C[JJ-1]+YT*S[JJ-1];
00423                Y[K+M*JJ]=YT*C[JJ-1]-XT*S[JJ-1];
00424             }
00425             else
00426             {
00427                REPORT
00428                X[K+M*U]=RA[U-1]+IB[U-1]; Y[K+M*U]=IA[U-1]-RB[U-1];
00429                JJ=P-U;
00430                X[K+M*JJ]=RA[U-1]-IB[U-1]; Y[K+M*JJ]=IA[U-1]+RB[U-1];
00431             }
00432          }
00433       }
00434       goto L500;
00435 L1500: ;
00436    }
00437    return;
00438 }
00439 
00440 static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1)
00441 //    RADIX TWO FOURIER TRANSFORM KERNEL;
00442 {
00443    REPORT
00444    bool NO_FOLD,ZERO;
00445    int  J,K,K0,M2,M_OVER_2;
00446    Real ANGLE,C,IS,IU,RS,RU,S,TWOPI;
00447 
00448    M2=M*2; M_OVER_2=M/2+1;
00449    TWOPI=8.0*atan(1.0);
00450 
00451    for (J=0; J<M_OVER_2; J++)
00452    {
00453       NO_FOLD = (J==0 || 2*J==M);
00454       K0=J;
00455       ANGLE=TWOPI*Real(J)/Real(M2); ZERO=ANGLE==0.0;
00456       C=cos(ANGLE); S=sin(ANGLE);
00457       goto L200;
00458    L100:
00459       REPORT
00460       if (NO_FOLD) { REPORT goto L600; }
00461       REPORT
00462       NO_FOLD=true; K0=M-J; C= -C;
00463    L200:
00464       REPORT
00465       for (K=K0; K<N; K+=M2)
00466       {
00467          RS=X0[K]+X1[K]; IS=Y0[K]+Y1[K];
00468          RU=X0[K]-X1[K]; IU=Y0[K]-Y1[K];
00469          X0[K]=RS; Y0[K]=IS;
00470          if (!ZERO) { X1[K]=RU*C+IU*S; Y1[K]=IU*C-RU*S; }
00471          else { X1[K]=RU; Y1[K]=IU; }
00472       }
00473       goto L100;
00474    L600: ;
00475    }
00476 
00477    return;
00478 }
00479 
00480 static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1,
00481    Real* X2, Real* Y2)
00482 //    RADIX THREE FOURIER TRANSFORM KERNEL
00483 {
00484    REPORT
00485    bool NO_FOLD,ZERO;
00486    int  J,K,K0,M3,M_OVER_2;
00487    Real ANGLE,A,B,C1,C2,S1,S2,T,TWOPI;
00488    Real I0,I1,I2,IA,IB,IS,R0,R1,R2,RA,RB,RS;
00489 
00490    M3=M*3; M_OVER_2=M/2+1; TWOPI=8.0*atan(1.0);
00491    A=cos(TWOPI/3.0); B=sin(TWOPI/3.0);
00492 
00493    for (J=0; J<M_OVER_2; J++)
00494    {
00495       NO_FOLD = (J==0 || 2*J==M);
00496       K0=J;
00497       ANGLE=TWOPI*Real(J)/Real(M3); ZERO=ANGLE==0.0;
00498       C1=cos(ANGLE); S1=sin(ANGLE);
00499       C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
00500       goto L200;
00501    L100:
00502       REPORT
00503       if (NO_FOLD) { REPORT goto L600; }
00504       REPORT
00505       NO_FOLD=true; K0=M-J;
00506       T=C1*A+S1*B; S1=C1*B-S1*A; C1=T;
00507       T=C2*A-S2*B; S2= -C2*B-S2*A; C2=T;
00508    L200:
00509       REPORT
00510       for (K=K0; K<N; K+=M3)
00511       {
00512          R0 = X0[K]; I0 = Y0[K];
00513          RS=X1[K]+X2[K]; IS=Y1[K]+Y2[K];
00514          X0[K]=R0+RS; Y0[K]=I0+IS;
00515          RA=R0+RS*A; IA=I0+IS*A;
00516          RB=(X1[K]-X2[K])*B; IB=(Y1[K]-Y2[K])*B;
00517          if (!ZERO)
00518          {
00519             REPORT
00520             R1=RA+IB; I1=IA-RB; R2=RA-IB; I2=IA+RB;
00521             X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1;
00522             X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
00523          }
00524          else { REPORT X1[K]=RA+IB; Y1[K]=IA-RB; X2[K]=RA-IB; Y2[K]=IA+RB; }
00525       }
00526       goto L100;
00527    L600: ;
00528    }
00529 
00530    return;
00531 }
00532 
00533 static void R_4_FTK (int N, int M,
00534    Real* X0, Real* Y0, Real* X1, Real* Y1,
00535    Real* X2, Real* Y2, Real* X3, Real* Y3)
00536 //    RADIX FOUR FOURIER TRANSFORM KERNEL
00537 {
00538    REPORT
00539    bool NO_FOLD,ZERO;
00540    int  J,K,K0,M4,M_OVER_2;
00541    Real ANGLE,C1,C2,C3,S1,S2,S3,T,TWOPI;
00542    Real I1,I2,I3,IS0,IS1,IU0,IU1,R1,R2,R3,RS0,RS1,RU0,RU1;
00543 
00544    M4=M*4; M_OVER_2=M/2+1;
00545    TWOPI=8.0*atan(1.0);
00546 
00547    for (J=0; J<M_OVER_2; J++)
00548    {
00549       NO_FOLD = (J==0 || 2*J==M);
00550       K0=J;
00551       ANGLE=TWOPI*Real(J)/Real(M4); ZERO=ANGLE==0.0;
00552       C1=cos(ANGLE); S1=sin(ANGLE);
00553       C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
00554       C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
00555       goto L200;
00556    L100:
00557       REPORT
00558       if (NO_FOLD) { REPORT goto L600; }
00559       REPORT
00560       NO_FOLD=true; K0=M-J;
00561       T=C1; C1=S1; S1=T;
00562       C2= -C2;
00563       T=C3; C3= -S3; S3= -T;
00564    L200:
00565       REPORT
00566       for (K=K0; K<N; K+=M4)
00567       {
00568          RS0=X0[K]+X2[K]; IS0=Y0[K]+Y2[K];
00569          RU0=X0[K]-X2[K]; IU0=Y0[K]-Y2[K];
00570          RS1=X1[K]+X3[K]; IS1=Y1[K]+Y3[K];
00571          RU1=X1[K]-X3[K]; IU1=Y1[K]-Y3[K];
00572          X0[K]=RS0+RS1; Y0[K]=IS0+IS1;
00573          if (!ZERO)
00574          {
00575             REPORT
00576             R1=RU0+IU1; I1=IU0-RU1;
00577             R2=RS0-RS1; I2=IS0-IS1;
00578             R3=RU0-IU1; I3=IU0+RU1;
00579             X2[K]=R1*C1+I1*S1; Y2[K]=I1*C1-R1*S1;
00580             X1[K]=R2*C2+I2*S2; Y1[K]=I2*C2-R2*S2;
00581             X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3;
00582          }
00583          else
00584          {
00585             REPORT
00586             X2[K]=RU0+IU1; Y2[K]=IU0-RU1;
00587             X1[K]=RS0-RS1; Y1[K]=IS0-IS1;
00588             X3[K]=RU0-IU1; Y3[K]=IU0+RU1;
00589          }
00590       }
00591       goto L100;
00592    L600: ;
00593    }
00594 
00595    return;
00596 }
00597 
00598 static void R_5_FTK (int N, int M,
00599    Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2,
00600    Real* X3, Real* Y3, Real* X4, Real* Y4)
00601 //    RADIX FIVE FOURIER TRANSFORM KERNEL
00602 
00603 {
00604    REPORT
00605    bool NO_FOLD,ZERO;
00606    int  J,K,K0,M5,M_OVER_2;
00607    Real ANGLE,A1,A2,B1,B2,C1,C2,C3,C4,S1,S2,S3,S4,T,TWOPI;
00608    Real R0,R1,R2,R3,R4,RA1,RA2,RB1,RB2,RS1,RS2,RU1,RU2;
00609    Real I0,I1,I2,I3,I4,IA1,IA2,IB1,IB2,IS1,IS2,IU1,IU2;
00610 
00611    M5=M*5; M_OVER_2=M/2+1;
00612    TWOPI=8.0*atan(1.0);
00613    A1=cos(TWOPI/5.0); B1=sin(TWOPI/5.0);
00614    A2=cos(2.0*TWOPI/5.0); B2=sin(2.0*TWOPI/5.0);
00615 
00616    for (J=0; J<M_OVER_2; J++)
00617    {
00618       NO_FOLD = (J==0 || 2*J==M);
00619       K0=J;
00620       ANGLE=TWOPI*Real(J)/Real(M5); ZERO=ANGLE==0.0;
00621       C1=cos(ANGLE); S1=sin(ANGLE);
00622       C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
00623       C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
00624       C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
00625       goto L200;
00626    L100:
00627       REPORT
00628       if (NO_FOLD) { REPORT goto L600; }
00629       REPORT
00630       NO_FOLD=true; K0=M-J;
00631       T=C1*A1+S1*B1; S1=C1*B1-S1*A1; C1=T;
00632       T=C2*A2+S2*B2; S2=C2*B2-S2*A2; C2=T;
00633       T=C3*A2-S3*B2; S3= -C3*B2-S3*A2; C3=T;
00634       T=C4*A1-S4*B1; S4= -C4*B1-S4*A1; C4=T;
00635    L200:
00636       REPORT
00637       for (K=K0; K<N; K+=M5)
00638       {
00639          R0=X0[K]; I0=Y0[K];
00640          RS1=X1[K]+X4[K]; IS1=Y1[K]+Y4[K];
00641          RU1=X1[K]-X4[K]; IU1=Y1[K]-Y4[K];
00642          RS2=X2[K]+X3[K]; IS2=Y2[K]+Y3[K];
00643          RU2=X2[K]-X3[K]; IU2=Y2[K]-Y3[K];
00644          X0[K]=R0+RS1+RS2; Y0[K]=I0+IS1+IS2;
00645          RA1=R0+RS1*A1+RS2*A2; IA1=I0+IS1*A1+IS2*A2;
00646          RA2=R0+RS1*A2+RS2*A1; IA2=I0+IS1*A2+IS2*A1;
00647          RB1=RU1*B1+RU2*B2; IB1=IU1*B1+IU2*B2;
00648          RB2=RU1*B2-RU2*B1; IB2=IU1*B2-IU2*B1;
00649          if (!ZERO)
00650          {
00651             REPORT
00652             R1=RA1+IB1; I1=IA1-RB1;
00653             R2=RA2+IB2; I2=IA2-RB2;
00654             R3=RA2-IB2; I3=IA2+RB2;
00655             R4=RA1-IB1; I4=IA1+RB1;
00656             X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1;
00657             X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
00658             X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3;
00659             X4[K]=R4*C4+I4*S4; Y4[K]=I4*C4-R4*S4;
00660          }
00661          else
00662          {
00663             REPORT
00664             X1[K]=RA1+IB1; Y1[K]=IA1-RB1;
00665             X2[K]=RA2+IB2; Y2[K]=IA2-RB2;
00666             X3[K]=RA2-IB2; Y3[K]=IA2+RB2;
00667             X4[K]=RA1-IB1; Y4[K]=IA1+RB1;
00668          }
00669       }
00670       goto L100;
00671    L600: ;
00672    }
00673 
00674    return;
00675 }
00676 
00677 static void R_8_FTK (int N, int M,
00678    Real* X0, Real* Y0, Real* X1, Real* Y1,
00679    Real* X2, Real* Y2, Real* X3, Real* Y3,
00680    Real* X4, Real* Y4, Real* X5, Real* Y5,
00681    Real* X6, Real* Y6, Real* X7, Real* Y7)
00682 //    RADIX EIGHT FOURIER TRANSFORM KERNEL
00683 {
00684    REPORT
00685    bool NO_FOLD,ZERO;
00686    int  J,K,K0,M8,M_OVER_2;
00687    Real ANGLE,C1,C2,C3,C4,C5,C6,C7,E,S1,S2,S3,S4,S5,S6,S7,T,TWOPI;
00688    Real R1,R2,R3,R4,R5,R6,R7,RS0,RS1,RS2,RS3,RU0,RU1,RU2,RU3;
00689    Real I1,I2,I3,I4,I5,I6,I7,IS0,IS1,IS2,IS3,IU0,IU1,IU2,IU3;
00690    Real RSS0,RSS1,RSU0,RSU1,RUS0,RUS1,RUU0,RUU1;
00691    Real ISS0,ISS1,ISU0,ISU1,IUS0,IUS1,IUU0,IUU1;
00692 
00693    M8=M*8; M_OVER_2=M/2+1;
00694    TWOPI=8.0*atan(1.0); E=cos(TWOPI/8.0);
00695 
00696    for (J=0;J<M_OVER_2;J++)
00697    {
00698       NO_FOLD= (J==0 || 2*J==M);
00699       K0=J;
00700       ANGLE=TWOPI*Real(J)/Real(M8); ZERO=ANGLE==0.0;
00701       C1=cos(ANGLE); S1=sin(ANGLE);
00702       C2=C1*C1-S1*S1; S2=C1*S1+S1*C1;
00703       C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
00704       C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
00705       C5=C4*C1-S4*S1; S5=S4*C1+C4*S1;
00706       C6=C4*C2-S4*S2; S6=S4*C2+C4*S2;
00707       C7=C4*C3-S4*S3; S7=S4*C3+C4*S3;
00708       goto L200;
00709    L100:
00710       REPORT
00711       if (NO_FOLD) { REPORT goto L600; }
00712       REPORT
00713       NO_FOLD=true; K0=M-J;
00714       T=(C1+S1)*E; S1=(C1-S1)*E; C1=T;
00715       T=S2; S2=C2; C2=T;
00716       T=(-C3+S3)*E; S3=(C3+S3)*E; C3=T;
00717       C4= -C4;
00718       T= -(C5+S5)*E; S5=(-C5+S5)*E; C5=T;
00719       T= -S6; S6= -C6; C6=T;
00720       T=(C7-S7)*E; S7= -(C7+S7)*E; C7=T;
00721    L200:
00722       REPORT
00723       for (K=K0; K<N; K+=M8)
00724       {
00725          RS0=X0[K]+X4[K]; IS0=Y0[K]+Y4[K];
00726          RU0=X0[K]-X4[K]; IU0=Y0[K]-Y4[K];
00727          RS1=X1[K]+X5[K]; IS1=Y1[K]+Y5[K];
00728          RU1=X1[K]-X5[K]; IU1=Y1[K]-Y5[K];
00729          RS2=X2[K]+X6[K]; IS2=Y2[K]+Y6[K];
00730          RU2=X2[K]-X6[K]; IU2=Y2[K]-Y6[K];
00731          RS3=X3[K]+X7[K]; IS3=Y3[K]+Y7[K];
00732          RU3=X3[K]-X7[K]; IU3=Y3[K]-Y7[K];
00733          RSS0=RS0+RS2; ISS0=IS0+IS2;
00734          RSU0=RS0-RS2; ISU0=IS0-IS2;
00735          RSS1=RS1+RS3; ISS1=IS1+IS3;
00736          RSU1=RS1-RS3; ISU1=IS1-IS3;
00737          RUS0=RU0-IU2; IUS0=IU0+RU2;
00738          RUU0=RU0+IU2; IUU0=IU0-RU2;
00739          RUS1=RU1-IU3; IUS1=IU1+RU3;
00740          RUU1=RU1+IU3; IUU1=IU1-RU3;
00741          T=(RUS1+IUS1)*E; IUS1=(IUS1-RUS1)*E; RUS1=T;
00742          T=(RUU1+IUU1)*E; IUU1=(IUU1-RUU1)*E; RUU1=T;
00743          X0[K]=RSS0+RSS1; Y0[K]=ISS0+ISS1;
00744          if (!ZERO)
00745          {
00746             REPORT
00747             R1=RUU0+RUU1; I1=IUU0+IUU1;
00748             R2=RSU0+ISU1; I2=ISU0-RSU1;
00749             R3=RUS0+IUS1; I3=IUS0-RUS1;
00750             R4=RSS0-RSS1; I4=ISS0-ISS1;
00751             R5=RUU0-RUU1; I5=IUU0-IUU1;
00752             R6=RSU0-ISU1; I6=ISU0+RSU1;
00753             R7=RUS0-IUS1; I7=IUS0+RUS1;
00754             X4[K]=R1*C1+I1*S1; Y4[K]=I1*C1-R1*S1;
00755             X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
00756             X6[K]=R3*C3+I3*S3; Y6[K]=I3*C3-R3*S3;
00757             X1[K]=R4*C4+I4*S4; Y1[K]=I4*C4-R4*S4;
00758             X5[K]=R5*C5+I5*S5; Y5[K]=I5*C5-R5*S5;
00759             X3[K]=R6*C6+I6*S6; Y3[K]=I6*C6-R6*S6;
00760             X7[K]=R7*C7+I7*S7; Y7[K]=I7*C7-R7*S7;
00761          }
00762          else
00763          {
00764             REPORT
00765             X4[K]=RUU0+RUU1; Y4[K]=IUU0+IUU1;
00766             X2[K]=RSU0+ISU1; Y2[K]=ISU0-RSU1;
00767             X6[K]=RUS0+IUS1; Y6[K]=IUS0-RUS1;
00768             X1[K]=RSS0-RSS1; Y1[K]=ISS0-ISS1;
00769             X5[K]=RUU0-RUU1; Y5[K]=IUU0-IUU1;
00770             X3[K]=RSU0-ISU1; Y3[K]=ISU0+RSU1;
00771             X7[K]=RUS0-IUS1; Y7[K]=IUS0+RUS1;
00772          }
00773       }
00774       goto L100;
00775    L600: ;
00776    }
00777 
00778    return;
00779 }
00780 
00781 static void R_16_FTK (int N, int M,
00782    Real* X0, Real* Y0, Real* X1, Real* Y1,
00783    Real* X2, Real* Y2, Real* X3, Real* Y3,
00784    Real* X4, Real* Y4, Real* X5, Real* Y5,
00785    Real* X6, Real* Y6, Real* X7, Real* Y7,
00786    Real* X8, Real* Y8, Real* X9, Real* Y9,
00787    Real* X10, Real* Y10, Real* X11, Real* Y11,
00788    Real* X12, Real* Y12, Real* X13, Real* Y13,
00789    Real* X14, Real* Y14, Real* X15, Real* Y15)
00790 //    RADIX SIXTEEN FOURIER TRANSFORM KERNEL
00791 {
00792    REPORT
00793    bool NO_FOLD,ZERO;
00794    int  J,K,K0,M16,M_OVER_2;
00795    Real ANGLE,EI1,ER1,E2,EI3,ER3,EI5,ER5,T,TWOPI;
00796    Real RS0,RS1,RS2,RS3,RS4,RS5,RS6,RS7;
00797    Real IS0,IS1,IS2,IS3,IS4,IS5,IS6,IS7;
00798    Real RU0,RU1,RU2,RU3,RU4,RU5,RU6,RU7;
00799    Real IU0,IU1,IU2,IU3,IU4,IU5,IU6,IU7;
00800    Real RUS0,RUS1,RUS2,RUS3,RUU0,RUU1,RUU2,RUU3;
00801    Real ISS0,ISS1,ISS2,ISS3,ISU0,ISU1,ISU2,ISU3;
00802    Real RSS0,RSS1,RSS2,RSS3,RSU0,RSU1,RSU2,RSU3;
00803    Real IUS0,IUS1,IUS2,IUS3,IUU0,IUU1,IUU2,IUU3;
00804    Real RSSS0,RSSS1,RSSU0,RSSU1,RSUS0,RSUS1,RSUU0,RSUU1;
00805    Real ISSS0,ISSS1,ISSU0,ISSU1,ISUS0,ISUS1,ISUU0,ISUU1;
00806    Real RUSS0,RUSS1,RUSU0,RUSU1,RUUS0,RUUS1,RUUU0,RUUU1;
00807    Real IUSS0,IUSS1,IUSU0,IUSU1,IUUS0,IUUS1,IUUU0,IUUU1;
00808    Real R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15;
00809    Real I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15;
00810    Real C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15;
00811    Real S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15;
00812 
00813    M16=M*16; M_OVER_2=M/2+1;
00814    TWOPI=8.0*atan(1.0);
00815    ER1=cos(TWOPI/16.0); EI1=sin(TWOPI/16.0);
00816    E2=cos(TWOPI/8.0);
00817    ER3=cos(3.0*TWOPI/16.0); EI3=sin(3.0*TWOPI/16.0);
00818    ER5=cos(5.0*TWOPI/16.0); EI5=sin(5.0*TWOPI/16.0);
00819 
00820    for (J=0; J<M_OVER_2; J++)
00821    {
00822       NO_FOLD = (J==0 || 2*J==M);
00823       K0=J;
00824       ANGLE=TWOPI*Real(J)/Real(M16);
00825       ZERO=ANGLE==0.0;
00826       C1=cos(ANGLE); S1=sin(ANGLE);
00827       C2=C1*C1-S1*S1; S2=C1*S1+S1*C1;
00828       C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
00829       C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
00830       C5=C4*C1-S4*S1; S5=S4*C1+C4*S1;
00831       C6=C4*C2-S4*S2; S6=S4*C2+C4*S2;
00832       C7=C4*C3-S4*S3; S7=S4*C3+C4*S3;
00833       C8=C4*C4-S4*S4; S8=C4*S4+S4*C4;
00834       C9=C8*C1-S8*S1; S9=S8*C1+C8*S1;
00835       C10=C8*C2-S8*S2; S10=S8*C2+C8*S2;
00836       C11=C8*C3-S8*S3; S11=S8*C3+C8*S3;
00837       C12=C8*C4-S8*S4; S12=S8*C4+C8*S4;
00838       C13=C8*C5-S8*S5; S13=S8*C5+C8*S5;
00839       C14=C8*C6-S8*S6; S14=S8*C6+C8*S6;
00840       C15=C8*C7-S8*S7; S15=S8*C7+C8*S7;
00841       goto L200;
00842    L100:
00843       REPORT
00844       if (NO_FOLD) { REPORT goto L600; }
00845       REPORT
00846       NO_FOLD=true; K0=M-J;
00847       T=C1*ER1+S1*EI1; S1= -S1*ER1+C1*EI1; C1=T;
00848       T=(C2+S2)*E2; S2=(C2-S2)*E2; C2=T;
00849       T=C3*ER3+S3*EI3; S3= -S3*ER3+C3*EI3; C3=T;
00850       T=S4; S4=C4; C4=T;
00851       T=S5*ER1-C5*EI1; S5=C5*ER1+S5*EI1; C5=T;
00852       T=(-C6+S6)*E2; S6=(C6+S6)*E2; C6=T;
00853       T=S7*ER3-C7*EI3; S7=C7*ER3+S7*EI3; C7=T;
00854       C8= -C8;
00855       T= -(C9*ER1+S9*EI1); S9=S9*ER1-C9*EI1; C9=T;
00856       T= -(C10+S10)*E2; S10=(-C10+S10)*E2; C10=T;
00857       T= -(C11*ER3+S11*EI3); S11=S11*ER3-C11*EI3; C11=T;
00858       T= -S12; S12= -C12; C12=T;
00859       T= -S13*ER1+C13*EI1; S13= -(C13*ER1+S13*EI1); C13=T;
00860       T=(C14-S14)*E2; S14= -(C14+S14)*E2; C14=T;
00861       T= -S15*ER3+C15*EI3; S15= -(C15*ER3+S15*EI3); C15=T;
00862    L200:
00863       REPORT
00864       for (K=K0; K<N; K+=M16)
00865       {
00866          RS0=X0[K]+X8[K]; IS0=Y0[K]+Y8[K];
00867          RU0=X0[K]-X8[K]; IU0=Y0[K]-Y8[K];
00868          RS1=X1[K]+X9[K]; IS1=Y1[K]+Y9[K];
00869          RU1=X1[K]-X9[K]; IU1=Y1[K]-Y9[K];
00870          RS2=X2[K]+X10[K]; IS2=Y2[K]+Y10[K];
00871          RU2=X2[K]-X10[K]; IU2=Y2[K]-Y10[K];
00872          RS3=X3[K]+X11[K]; IS3=Y3[K]+Y11[K];
00873          RU3=X3[K]-X11[K]; IU3=Y3[K]-Y11[K];
00874          RS4=X4[K]+X12[K]; IS4=Y4[K]+Y12[K];
00875          RU4=X4[K]-X12[K]; IU4=Y4[K]-Y12[K];
00876          RS5=X5[K]+X13[K]; IS5=Y5[K]+Y13[K];
00877          RU5=X5[K]-X13[K]; IU5=Y5[K]-Y13[K];
00878          RS6=X6[K]+X14[K]; IS6=Y6[K]+Y14[K];
00879          RU6=X6[K]-X14[K]; IU6=Y6[K]-Y14[K];
00880          RS7=X7[K]+X15[K]; IS7=Y7[K]+Y15[K];
00881          RU7=X7[K]-X15[K]; IU7=Y7[K]-Y15[K];
00882          RSS0=RS0+RS4; ISS0=IS0+IS4;
00883          RSS1=RS1+RS5; ISS1=IS1+IS5;
00884          RSS2=RS2+RS6; ISS2=IS2+IS6;
00885          RSS3=RS3+RS7; ISS3=IS3+IS7;
00886          RSU0=RS0-RS4; ISU0=IS0-IS4;
00887          RSU1=RS1-RS5; ISU1=IS1-IS5;
00888          RSU2=RS2-RS6; ISU2=IS2-IS6;
00889          RSU3=RS3-RS7; ISU3=IS3-IS7;
00890          RUS0=RU0-IU4; IUS0=IU0+RU4;
00891          RUS1=RU1-IU5; IUS1=IU1+RU5;
00892          RUS2=RU2-IU6; IUS2=IU2+RU6;
00893          RUS3=RU3-IU7; IUS3=IU3+RU7;
00894          RUU0=RU0+IU4; IUU0=IU0-RU4;
00895          RUU1=RU1+IU5; IUU1=IU1-RU5;
00896          RUU2=RU2+IU6; IUU2=IU2-RU6;
00897          RUU3=RU3+IU7; IUU3=IU3-RU7;
00898          T=(RSU1+ISU1)*E2; ISU1=(ISU1-RSU1)*E2; RSU1=T;
00899          T=(RSU3+ISU3)*E2; ISU3=(ISU3-RSU3)*E2; RSU3=T;
00900          T=RUS1*ER3+IUS1*EI3; IUS1=IUS1*ER3-RUS1*EI3; RUS1=T;
00901          T=(RUS2+IUS2)*E2; IUS2=(IUS2-RUS2)*E2; RUS2=T;
00902          T=RUS3*ER5+IUS3*EI5; IUS3=IUS3*ER5-RUS3*EI5; RUS3=T;
00903          T=RUU1*ER1+IUU1*EI1; IUU1=IUU1*ER1-RUU1*EI1; RUU1=T;
00904          T=(RUU2+IUU2)*E2; IUU2=(IUU2-RUU2)*E2; RUU2=T;
00905          T=RUU3*ER3+IUU3*EI3; IUU3=IUU3*ER3-RUU3*EI3; RUU3=T;
00906          RSSS0=RSS0+RSS2; ISSS0=ISS0+ISS2;
00907          RSSS1=RSS1+RSS3; ISSS1=ISS1+ISS3;
00908          RSSU0=RSS0-RSS2; ISSU0=ISS0-ISS2;
00909          RSSU1=RSS1-RSS3; ISSU1=ISS1-ISS3;
00910          RSUS0=RSU0-ISU2; ISUS0=ISU0+RSU2;
00911          RSUS1=RSU1-ISU3; ISUS1=ISU1+RSU3;
00912          RSUU0=RSU0+ISU2; ISUU0=ISU0-RSU2;
00913          RSUU1=RSU1+ISU3; ISUU1=ISU1-RSU3;
00914          RUSS0=RUS0-IUS2; IUSS0=IUS0+RUS2;
00915          RUSS1=RUS1-IUS3; IUSS1=IUS1+RUS3;
00916          RUSU0=RUS0+IUS2; IUSU0=IUS0-RUS2;
00917          RUSU1=RUS1+IUS3; IUSU1=IUS1-RUS3;
00918          RUUS0=RUU0+RUU2; IUUS0=IUU0+IUU2;
00919          RUUS1=RUU1+RUU3; IUUS1=IUU1+IUU3;
00920          RUUU0=RUU0-RUU2; IUUU0=IUU0-IUU2;
00921          RUUU1=RUU1-RUU3; IUUU1=IUU1-IUU3;
00922          X0[K]=RSSS0+RSSS1; Y0[K]=ISSS0+ISSS1;
00923          if (!ZERO)
00924          {
00925             REPORT
00926             R1=RUUS0+RUUS1; I1=IUUS0+IUUS1;
00927             R2=RSUU0+RSUU1; I2=ISUU0+ISUU1;
00928             R3=RUSU0+RUSU1; I3=IUSU0+IUSU1;
00929             R4=RSSU0+ISSU1; I4=ISSU0-RSSU1;
00930             R5=RUUU0+IUUU1; I5=IUUU0-RUUU1;
00931             R6=RSUS0+ISUS1; I6=ISUS0-RSUS1;
00932             R7=RUSS0+IUSS1; I7=IUSS0-RUSS1;
00933             R8=RSSS0-RSSS1; I8=ISSS0-ISSS1;
00934             R9=RUUS0-RUUS1; I9=IUUS0-IUUS1;
00935             R10=RSUU0-RSUU1; I10=ISUU0-ISUU1;
00936             R11=RUSU0-RUSU1; I11=IUSU0-IUSU1;
00937             R12=RSSU0-ISSU1; I12=ISSU0+RSSU1;
00938             R13=RUUU0-IUUU1; I13=IUUU0+RUUU1;
00939             R14=RSUS0-ISUS1; I14=ISUS0+RSUS1;
00940             R15=RUSS0-IUSS1; I15=IUSS0+RUSS1;
00941             X8[K]=R1*C1+I1*S1; Y8[K]=I1*C1-R1*S1;
00942             X4[K]=R2*C2+I2*S2; Y4[K]=I2*C2-R2*S2;
00943             X12[K]=R3*C3+I3*S3; Y12[K]=I3*C3-R3*S3;
00944             X2[K]=R4*C4+I4*S4; Y2[K]=I4*C4-R4*S4;
00945             X10[K]=R5*C5+I5*S5; Y10[K]=I5*C5-R5*S5;
00946             X6[K]=R6*C6+I6*S6; Y6[K]=I6*C6-R6*S6;
00947             X14[K]=R7*C7+I7*S7; Y14[K]=I7*C7-R7*S7;
00948             X1[K]=R8*C8+I8*S8; Y1[K]=I8*C8-R8*S8;
00949             X9[K]=R9*C9+I9*S9; Y9[K]=I9*C9-R9*S9;
00950             X5[K]=R10*C10+I10*S10; Y5[K]=I10*C10-R10*S10;
00951             X13[K]=R11*C11+I11*S11; Y13[K]=I11*C11-R11*S11;
00952             X3[K]=R12*C12+I12*S12; Y3[K]=I12*C12-R12*S12;
00953             X11[K]=R13*C13+I13*S13; Y11[K]=I13*C13-R13*S13;
00954             X7[K]=R14*C14+I14*S14; Y7[K]=I14*C14-R14*S14;
00955             X15[K]=R15*C15+I15*S15; Y15[K]=I15*C15-R15*S15;
00956          }
00957          else
00958          {
00959             REPORT
00960             X8[K]=RUUS0+RUUS1; Y8[K]=IUUS0+IUUS1;
00961             X4[K]=RSUU0+RSUU1; Y4[K]=ISUU0+ISUU1;
00962             X12[K]=RUSU0+RUSU1; Y12[K]=IUSU0+IUSU1;
00963             X2[K]=RSSU0+ISSU1; Y2[K]=ISSU0-RSSU1;
00964             X10[K]=RUUU0+IUUU1; Y10[K]=IUUU0-RUUU1;
00965             X6[K]=RSUS0+ISUS1; Y6[K]=ISUS0-RSUS1;
00966             X14[K]=RUSS0+IUSS1; Y14[K]=IUSS0-RUSS1;
00967             X1[K]=RSSS0-RSSS1; Y1[K]=ISSS0-ISSS1;
00968             X9[K]=RUUS0-RUUS1; Y9[K]=IUUS0-IUUS1;
00969             X5[K]=RSUU0-RSUU1; Y5[K]=ISUU0-ISUU1;
00970             X13[K]=RUSU0-RUSU1; Y13[K]=IUSU0-IUSU1;
00971             X3[K]=RSSU0-ISSU1; Y3[K]=ISSU0+RSSU1;
00972             X11[K]=RUUU0-IUUU1; Y11[K]=IUUU0+RUUU1;
00973             X7[K]=RSUS0-ISUS1; Y7[K]=ISUS0+RSUS1;
00974             X15[K]=RUSS0-IUSS1; Y15[K]=IUSS0+RUSS1;
00975          }
00976       }
00977       goto L100;
00978    L600: ;
00979    }
00980 
00981    return;
00982 }
00983 
00984 // can the number of points be factorised sufficiently
00985 // for the fft to run
00986 
00987 bool FFT_Controller::CanFactor(int PTS)
00988 {
00989    REPORT
00990    const int NP = 16, NQ = 10, PMAX=19;
00991 
00992    if (PTS<=1) { REPORT return true; }
00993 
00994    int N = PTS, F = 2, P = 0, Q = 0;
00995 
00996    while (N > 1)
00997    {
00998       bool fail = true;
00999       for (int J = F; J <= PMAX; J++)
01000          if (N % J == 0) { fail = false; F=J; break; }
01001       if (fail || P >= NP || Q >= NQ) { REPORT return false; }
01002       N /= F;
01003       if (N % F != 0) Q++; else { N /= F; P++; }
01004    }
01005 
01006    return true;    // can factorise
01007 
01008 }
01009 
01010 bool FFT_Controller::OnlyOldFFT;         // static variable
01011 
01012 // **************************** multi radix counter **********************
01013 
01014 MultiRadixCounter::MultiRadixCounter(int nx, const SimpleIntArray& rx,
01015    SimpleIntArray& vx)
01016    : Radix(rx), Value(vx), n(nx), reverse(0),
01017       product(1), counter(0), finish(false)
01018 {
01019    REPORT for (int k = 0; k < n; k++) { Value[k] = 0; product *= Radix[k]; }
01020 }
01021 
01022 void MultiRadixCounter::operator++()
01023 {
01024    REPORT
01025    counter++; int p = product;
01026    for (int k = 0; k < n; k++)
01027    {
01028       Value[k]++; int p1 = p / Radix[k]; reverse += p1;
01029       if (Value[k] == Radix[k]) { REPORT Value[k] = 0; reverse -= p; p = p1; }
01030       else { REPORT return; }
01031    }
01032    finish = true;
01033 }
01034 
01035 
01036 static int BitReverse(int x, int prod, int n, const SimpleIntArray& f)
01037 {
01038    // x = c[0]+f[0]*(c[1]+f[1]*(c[2]+...
01039    // return c[n-1]+f[n-1]*(c[n-2]+f[n-2]*(c[n-3]+...
01040    // prod is the product of the f[i]
01041    // n is the number of f[i] (don't assume f has the correct length)
01042 
01043    REPORT
01044    const int* d = f.Data() + n; int sum = 0; int q = 1;
01045    while (n--)
01046    {
01047       prod /= *(--d);
01048       int c = x / prod; x-= c * prod;
01049       sum += q * c; q *= *d;
01050    }
01051    return sum;
01052 }
01053 
01054 
01055 #ifdef use_namespace
01056 }
01057 #endif
01058 
01059 


rl_agent
Author(s): Todd Hester
autogenerated on Thu Jun 6 2019 22:00:13