00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035 #define BOOST_PARAMETER_MAX_ARITY 7
00036 #include "jsk_pcl_ros_utils/plane_concatenator.h"
00037 #include <pcl/kdtree/kdtree_flann.h>
00038 #include <pcl/sample_consensus/method_types.h>
00039 #include <pcl/sample_consensus/model_types.h>
00040 #include <pcl/segmentation/sac_segmentation.h>
00041 #include "jsk_recognition_utils/pcl_conversion_util.h"
00042 #include "jsk_recognition_utils/pcl_util.h"
00043
00044 namespace jsk_pcl_ros_utils
00045 {
00046 void PlaneConcatenator::onInit()
00047 {
00048 DiagnosticNodelet::onInit();
00049 pcl::console::setVerbosityLevel(pcl::console::L_ALWAYS);
00050 srv_ = boost::make_shared <dynamic_reconfigure::Server<Config> > (*pnh_);
00051 dynamic_reconfigure::Server<Config>::CallbackType f =
00052 boost::bind (
00053 &PlaneConcatenator::configCallback, this, _1, _2);
00054 srv_->setCallback (f);
00055
00056 pub_indices_ = advertise<jsk_recognition_msgs::ClusterPointIndices>(
00057 *pnh_, "output/indices", 1);
00058 pub_polygon_ = advertise<jsk_recognition_msgs::PolygonArray>(
00059 *pnh_, "output/polygons", 1);
00060 pub_coefficients_ = advertise<jsk_recognition_msgs::ModelCoefficientsArray>(
00061 *pnh_, "output/coefficients", 1);
00062
00063 onInitPostProcess();
00064 }
00065
00066 void PlaneConcatenator::subscribe()
00067 {
00068 sub_cloud_.subscribe(*pnh_, "input", 1);
00069 sub_indices_.subscribe(*pnh_, "input/indices", 1);
00070 sub_polygon_.subscribe(*pnh_, "input/polygons", 1);
00071 sub_coefficients_.subscribe(*pnh_, "input/coefficients", 1);
00072 sync_ = boost::make_shared<message_filters::Synchronizer<SyncPolicy> > (100);
00073 sync_->connectInput(sub_cloud_, sub_indices_,
00074 sub_polygon_, sub_coefficients_);
00075 sync_->registerCallback(boost::bind(&PlaneConcatenator::concatenate, this,
00076 _1, _2, _3, _4));
00077 }
00078
00079 void PlaneConcatenator::unsubscribe()
00080 {
00081 sub_cloud_.unsubscribe();
00082 sub_indices_.unsubscribe();
00083 sub_polygon_.unsubscribe();
00084 sub_coefficients_.unsubscribe();
00085 }
00086
00087 void PlaneConcatenator::concatenate(
00088 const sensor_msgs::PointCloud2::ConstPtr& cloud_msg,
00089 const jsk_recognition_msgs::ClusterPointIndices::ConstPtr& indices_msg,
00090 const jsk_recognition_msgs::PolygonArray::ConstPtr& polygon_array_msg,
00091 const jsk_recognition_msgs::ModelCoefficientsArray::ConstPtr& coefficients_array_msg)
00092 {
00093 boost::mutex::scoped_lock lock(mutex_);
00094 vital_checker_->poke();
00095
00096 size_t nr_cluster = polygon_array_msg->polygons.size();
00097 pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
00098 pcl::fromROSMsg(*cloud_msg, *cloud);
00099
00100 std::vector<pcl::ModelCoefficients::Ptr> all_coefficients
00101 = pcl_conversions::convertToPCLModelCoefficients(
00102 coefficients_array_msg->coefficients);
00103 std::vector<pcl::PointIndices::Ptr> all_indices
00104 = pcl_conversions::convertToPCLPointIndices(indices_msg->cluster_indices);
00105 std::vector<pcl::PointCloud<PointT>::Ptr> all_clouds
00106 = jsk_recognition_utils::convertToPointCloudArray<PointT>(cloud, all_indices);
00107 std::vector<jsk_recognition_utils::Plane::Ptr> planes
00108 = jsk_recognition_utils::convertToPlanes(all_coefficients);
00109
00110 jsk_recognition_utils::IntegerGraphMap connection_map;
00111 for (size_t i = 0; i < nr_cluster; i++) {
00112 connection_map[i] = std::vector<int>();
00113 connection_map[i].push_back(i);
00114
00115 pcl::KdTreeFLANN<PointT> kdtree;
00116 pcl::PointCloud<PointT>::Ptr focused_cloud = all_clouds[i];
00117 kdtree.setInputCloud(focused_cloud);
00118
00119 jsk_recognition_utils::Plane::Ptr focused_plane = planes[i];
00120 for (size_t j = i + 1; j < nr_cluster; j++) {
00121 jsk_recognition_utils::Plane::Ptr target_plane = planes[j];
00122 if (focused_plane->angle(*target_plane) < connect_angular_threshold_) {
00123
00124 bool is_near_enough = isNearPointCloud(kdtree, all_clouds[j], target_plane);
00125 if (is_near_enough) {
00126 connection_map[i].push_back(j);
00127 }
00128 }
00129 }
00130 }
00131 std::vector<std::set<int> > cloud_sets;
00132 jsk_recognition_utils::buildAllGroupsSetFromGraphMap(connection_map, cloud_sets);
00133
00134 std::vector<pcl::PointIndices::Ptr> new_indices;
00135 std::vector<pcl::ModelCoefficients::Ptr> new_coefficients;
00136 for (size_t i = 0; i < cloud_sets.size(); i++) {
00137 pcl::PointIndices::Ptr new_one_indices (new pcl::PointIndices);
00138 new_coefficients.push_back(all_coefficients[*cloud_sets[i].begin()]);
00139 for (std::set<int>::iterator it = cloud_sets[i].begin();
00140 it != cloud_sets[i].end();
00141 ++it) {
00142 new_one_indices = jsk_recognition_utils::addIndices(*new_one_indices, *all_indices[*it]);
00143 }
00144 if (new_one_indices->indices.size() > min_size_) {
00145 new_indices.push_back(new_one_indices);
00146 }
00147 }
00148
00149
00150 std::vector<pcl::ModelCoefficients::Ptr> new_refined_coefficients;
00151 for (size_t i = 0; i < new_indices.size(); i++) {
00152 pcl::ModelCoefficients::Ptr refined_coefficients
00153 = refinement(cloud, new_indices[i], new_coefficients[i]);
00154 new_refined_coefficients.push_back(refined_coefficients);
00155 }
00156
00157
00158 jsk_recognition_msgs::ClusterPointIndices new_ros_indices;
00159 jsk_recognition_msgs::ModelCoefficientsArray new_ros_coefficients;
00160 jsk_recognition_msgs::PolygonArray new_ros_polygons;
00161 new_ros_indices.header = cloud_msg->header;
00162 new_ros_coefficients.header = cloud_msg->header;
00163 new_ros_polygons.header = cloud_msg->header;
00164 for (size_t i = 0; i < new_indices.size(); i++) {
00165 jsk_recognition_utils::ConvexPolygon::Ptr convex
00166 = jsk_recognition_utils::convexFromCoefficientsAndInliers<PointT>(
00167 cloud, new_indices[i], new_refined_coefficients[i]);
00168 if (convex->area() > min_area_ && convex->area() < max_area_) {
00169 geometry_msgs::PolygonStamped polygon;
00170 polygon.polygon = convex->toROSMsg();
00171 polygon.header = cloud_msg->header;
00172 new_ros_polygons.polygons.push_back(polygon);
00173 pcl_msgs::PointIndices ros_indices;
00174 ros_indices.header = cloud_msg->header;
00175 ros_indices.indices = new_indices[i]->indices;
00176 new_ros_indices.cluster_indices.push_back(ros_indices);
00177 pcl_msgs::ModelCoefficients ros_coefficients;
00178 ros_coefficients.header = cloud_msg->header;
00179 ros_coefficients.values = new_refined_coefficients[i]->values;
00180 new_ros_coefficients.coefficients.push_back(ros_coefficients);
00181 }
00182 }
00183
00184
00185
00186
00187
00188
00189
00190 pub_indices_.publish(new_ros_indices);
00191 pub_polygon_.publish(new_ros_polygons);
00192 pub_coefficients_.publish(new_ros_coefficients);
00193 }
00194
00195 pcl::ModelCoefficients::Ptr PlaneConcatenator::refinement(
00196 pcl::PointCloud<PointT>::Ptr cloud,
00197 pcl::PointIndices::Ptr indices,
00198 pcl::ModelCoefficients::Ptr original_coefficients)
00199 {
00200 pcl::SACSegmentation<PointT> seg;
00201 seg.setOptimizeCoefficients (true);
00202 seg.setModelType (pcl::SACMODEL_PERPENDICULAR_PLANE);
00203 seg.setMethodType (pcl::SAC_RANSAC);
00204 seg.setDistanceThreshold (ransac_refinement_outlier_threshold_);
00205
00206 seg.setInputCloud(cloud);
00207
00208 seg.setIndices(indices);
00209 seg.setMaxIterations (ransac_refinement_max_iteration_);
00210 Eigen::Vector3f normal (original_coefficients->values[0],
00211 original_coefficients->values[1],
00212 original_coefficients->values[2]);
00213 seg.setAxis(normal);
00214
00215
00216
00217 seg.setEpsAngle(ransac_refinement_eps_angle_);
00218 pcl::PointIndices::Ptr refined_inliers (new pcl::PointIndices);
00219 pcl::ModelCoefficients::Ptr refined_coefficients(new pcl::ModelCoefficients);
00220 seg.segment(*refined_inliers, *refined_coefficients);
00221 if (refined_inliers->indices.size() > 0) {
00222 return refined_coefficients;
00223 }
00224 else {
00225 return original_coefficients;
00226 }
00227 }
00228
00229 bool PlaneConcatenator::isNearPointCloud(
00230 pcl::KdTreeFLANN<PointT>& kdtree,
00231 pcl::PointCloud<PointT>::Ptr cloud,
00232 jsk_recognition_utils::Plane::Ptr target_plane)
00233 {
00234 pcl::PointCloud<PointT>::ConstPtr input_cloud = kdtree.getInputCloud();
00235 for (size_t i = 0; i < cloud->points.size(); i++) {
00236 PointT p = cloud->points[i];
00237 std::vector<int> k_indices;
00238 std::vector<float> k_sqr_distances;
00239 if (kdtree.radiusSearch(p, connect_distance_threshold_,
00240 k_indices, k_sqr_distances, 1) > 0) {
00241
00242 const PointT near_p = input_cloud->points[k_indices[0]];
00243 Eigen::Affine3f plane_coordinates = target_plane->coordinates();
00244 Eigen::Vector3f plane_local_p = plane_coordinates.inverse() * p.getVector3fMap();
00245 Eigen::Vector3f plane_local_near_p = plane_coordinates.inverse() * near_p.getVector3fMap();
00246 Eigen::Vector3f plane_local_diff = plane_local_near_p - plane_local_p;
00247 double perpendicular_distance = std::abs(plane_local_diff[2]);
00248 if (perpendicular_distance < connect_perpendicular_distance_threshold_) {
00249 return true;
00250 }
00251 }
00252 }
00253 return false;
00254 }
00255
00256 void PlaneConcatenator::configCallback(
00257 Config &config, uint32_t level)
00258 {
00259 boost::mutex::scoped_lock lock(mutex_);
00260 connect_angular_threshold_ = config.connect_angular_threshold;
00261 connect_distance_threshold_ = config.connect_distance_threshold;
00262 connect_perpendicular_distance_threshold_ = config.connect_perpendicular_distance_threshold;
00263 ransac_refinement_max_iteration_ = config.ransac_refinement_max_iteration;
00264 ransac_refinement_outlier_threshold_
00265 = config.ransac_refinement_outlier_threshold;
00266 ransac_refinement_eps_angle_ = config.ransac_refinement_eps_angle;
00267 min_size_ = config.min_size;
00268 min_area_ = config.min_area;
00269 max_area_ = config.max_area;
00270 }
00271 }
00272
00273 #include <pluginlib/class_list_macros.h>
00274 PLUGINLIB_EXPORT_CLASS (jsk_pcl_ros_utils::PlaneConcatenator, nodelet::Nodelet);