Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023 #include <filter/extendedkalmanfilter.h>
00024
00025 #include <model/linearanalyticsystemmodel_gaussianuncertainty.h>
00026 #include <model/linearanalyticmeasurementmodel_gaussianuncertainty.h>
00027
00028 #include <pdf/analyticconditionalgaussian.h>
00029 #include <pdf/linearanalyticconditionalgaussian.h>
00030 #include "../nonlinearanalyticconditionalgaussian3D.h"
00031
00032 #include "../mobile_robot.h"
00033
00034 #include <iostream>
00035 #include <fstream>
00036
00037
00038 #include "../mobile_robot_wall_cts.h"
00039
00040 using namespace MatrixWrapper;
00041 using namespace BFL;
00042 using namespace std;
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073 int main(int argc, char** argv)
00074 {
00075 cerr << "==================================================" << endl
00076 << "Test of kalman filter" << endl
00077 << "Mobile robot localisation example" << endl
00078 << "==================================================" << endl;
00079
00080
00081
00082
00083
00084
00085
00086 ColumnVector sys_noise_Mu(STATE_SIZE);
00087 sys_noise_Mu(1) = MU_SYSTEM_NOISE_X;
00088 sys_noise_Mu(2) = MU_SYSTEM_NOISE_Y;
00089 sys_noise_Mu(3) = MU_SYSTEM_NOISE_THETA;
00090
00091 SymmetricMatrix sys_noise_Cov(STATE_SIZE);
00092 sys_noise_Cov = 0.0;
00093 sys_noise_Cov(1,1) = SIGMA_SYSTEM_NOISE_X;
00094 sys_noise_Cov(1,2) = 0.0;
00095 sys_noise_Cov(1,3) = 0.0;
00096 sys_noise_Cov(2,1) = 0.0;
00097 sys_noise_Cov(2,2) = SIGMA_SYSTEM_NOISE_Y;
00098 sys_noise_Cov(2,3) = 0.0;
00099 sys_noise_Cov(3,1) = 0.0;
00100 sys_noise_Cov(3,2) = 0.0;
00101 sys_noise_Cov(3,3) = SIGMA_SYSTEM_NOISE_THETA;
00102
00103 Gaussian system_Uncertainty(sys_noise_Mu, sys_noise_Cov);
00104
00105
00106 NonLinearAnalyticConditionalGaussianMobile sys_pdf(system_Uncertainty);
00107 AnalyticSystemModelGaussianUncertainty sys_model(&sys_pdf);
00108
00109
00110
00111
00112
00113
00114 double wall_ct = 2/(sqrt(pow(RICO_WALL,2.0) + 1));
00115 Matrix H(MEAS_SIZE,STATE_SIZE);
00116 H = 0.0;
00117 H(1,1) = wall_ct * RICO_WALL;
00118 H(1,2) = 0 - wall_ct;
00119 H(1,3) = 0.0;
00120
00121 ColumnVector meas_noise_Mu(MEAS_SIZE);
00122 meas_noise_Mu(1) = MU_MEAS_NOISE;
00123
00124 SymmetricMatrix meas_noise_Cov(MEAS_SIZE);
00125 meas_noise_Cov(1,1) = SIGMA_MEAS_NOISE;
00126 Gaussian measurement_Uncertainty(meas_noise_Mu, meas_noise_Cov);
00127
00128
00129 LinearAnalyticConditionalGaussian meas_pdf(H, measurement_Uncertainty);
00130 LinearAnalyticMeasurementModelGaussianUncertainty meas_model(&meas_pdf);
00131
00132
00133
00134
00135
00136 ColumnVector prior_Mu(STATE_SIZE);
00137 prior_Mu(1) = PRIOR_MU_X;
00138 prior_Mu(2) = PRIOR_MU_Y;
00139 prior_Mu(3) = PRIOR_MU_THETA;
00140 SymmetricMatrix prior_Cov(STATE_SIZE);
00141 prior_Cov(1,1) = PRIOR_COV_X;
00142 prior_Cov(1,2) = 0.0;
00143 prior_Cov(1,3) = 0.0;
00144 prior_Cov(2,1) = 0.0;
00145 prior_Cov(2,2) = PRIOR_COV_Y;
00146 prior_Cov(2,3) = 0.0;
00147 prior_Cov(3,1) = 0.0;
00148 prior_Cov(3,2) = 0.0;
00149 prior_Cov(3,3) = PRIOR_COV_THETA;
00150 Gaussian prior_cont(prior_Mu,prior_Cov);
00151
00152
00153
00154
00155 ExtendedKalmanFilter filter(&prior_cont);
00156
00157
00158
00159
00160
00161
00162 MobileRobot mobile_robot;
00163 ColumnVector input(2);
00164 input(1) = 0.1;
00165 input(2) = 0.0;
00166
00167
00168
00169
00170
00171
00172
00173 cout << "MAIN: Starting estimation" << endl;
00174 unsigned int time_step;
00175 for (time_step = 0; time_step < NUM_TIME_STEPS-1; time_step++)
00176 {
00177
00178 mobile_robot.Move(input);
00179
00180
00181 ColumnVector measurement = mobile_robot.Measure();
00182
00183
00184 filter.Update(&sys_model,input,&meas_model,measurement);
00185
00186
00187 }
00188
00189
00190
00191 Pdf<ColumnVector> * posterior = filter.PostGet();
00192 cout << "After " << time_step+1 << " timesteps " << endl;
00193 cout << " Posterior Mean = " << endl << posterior->ExpectedValueGet() << endl
00194 << " Covariance = " << endl << posterior->CovarianceGet() << "" << endl;
00195
00196
00197 cout << "======================================================" << endl
00198 << "End of the Kalman filter for mobile robot localisation" << endl
00199 << "======================================================"
00200 << endl;
00201
00202
00203 return 0;
00204 }