logarithm.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00035 #include <acado/utils/acado_utils.hpp>
00036 #include <acado/symbolic_operator/symbolic_operator.hpp>
00037 
00038 
00039 double dLogarithm(double x){
00040   return 1/x;
00041 }
00042 
00043 
00044 double ddLogarithm(double x){
00045   return -1/x/x;
00046 }
00047 
00048 BEGIN_NAMESPACE_ACADO
00049 
00050 
00051 Logarithm::Logarithm():UnaryOperator(){
00052   cName = "log";
00053 
00054   fcn = &log;
00055   dfcn = &dLogarithm;
00056   ddfcn = &ddLogarithm;
00057 
00058   operatorName = ON_LOGARITHM;
00059 
00060 }
00061 
00062 Logarithm::Logarithm( Operator *_argument ):UnaryOperator(_argument){
00063   cName = "log";
00064 
00065   fcn = &log;
00066   dfcn = &dLogarithm;
00067   ddfcn = &ddLogarithm;
00068 
00069   operatorName = ON_LOGARITHM;
00070 }
00071 
00072 
00073 Logarithm::Logarithm( const Logarithm &arg ):UnaryOperator(arg){
00074   cName = "log";
00075 
00076   fcn = &log;
00077   dfcn = &dLogarithm;
00078   ddfcn = &ddLogarithm;
00079 
00080   operatorName = ON_LOGARITHM;
00081 }
00082 
00083 
00084 Logarithm::~Logarithm(){
00085 
00086 }
00087 
00088 
00089 Logarithm& Logarithm::operator=( const Logarithm &arg ){
00090 
00091   UnaryOperator::operator=(arg);
00092 
00093   return *this;
00094 }
00095 
00096 
00097 returnValue Logarithm::evaluate( EvaluationBase *x ){
00098  
00099     x->Log(*argument);
00100     return SUCCESSFUL_RETURN;
00101 }
00102 
00103 
00104 
00105 Operator* Logarithm::substitute( int index, const Operator *sub ){
00106 
00107     return new Logarithm( argument->substitute( index , sub ) );
00108 
00109 }
00110 
00111 Operator* Logarithm::clone() const{
00112 
00113     return new Logarithm(*this);
00114 }
00115 
00116 
00117 CurvatureType Logarithm::getCurvature( ){
00118 
00119     if( curvature != CT_UNKNOWN )  return curvature;
00120 
00121     const CurvatureType cc = argument->getCurvature();
00122 
00123     if( cc == CT_CONSTANT )  return CT_CONSTANT;
00124     if( cc == CT_AFFINE   )  return CT_CONCAVE ;
00125     if( cc == CT_CONCAVE  )  return CT_CONCAVE ;
00126 
00127     return CT_NEITHER_CONVEX_NOR_CONCAVE;
00128 }
00129 
00130 returnValue Logarithm::initDerivative() {
00131 
00132         if( initialized ) return SUCCESSFUL_RETURN;
00133         initialized = BT_TRUE;
00134 
00135         derivative = convert2TreeProjection(new Power_Int( argument->clone(), -1 ));
00136         derivative2 = convert2TreeProjection(new Product( new DoubleConstant( -1.0 , NE_NEITHER_ONE_NOR_ZERO ), new Power_Int( argument->clone(), -2 ) ));
00137 
00138         return argument->initDerivative();
00139 }
00140 
00141 
00142 CLOSE_NAMESPACE_ACADO
00143 
00144 // end of file.


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Sat Jun 8 2019 19:37:53