wave_energy.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00034 #include <acado_optimal_control.hpp>
00035 #include <acado_gnuplot.hpp>
00036 
00037 using namespace std;
00038 
00039 USING_NAMESPACE_ACADO
00040 
00041 int main( )
00042 {
00043         // Parameters
00044         double h_hw = 10;    // water level
00045         double A_hw = 1.0;   // amplitude of the waves
00046         double T_hw = 5.0;   // duration of a wave
00047         double rho  = 1000;  // density of water
00048         double A    = 1.0;   // bottom area of the buoy
00049         double m    = 100;   // mass of the buoy
00050         double g    = 9.81;  // gravitational constant
00051 
00052         // Free varameter
00053         double a = 1.0;      // take to be constant here
00054 
00055         // Variables
00056         DifferentialState h; // Position of the buoy
00057         DifferentialState v; // Velocity of the buoy
00058         DifferentialState w; // Produced wave energy
00059         TIME t;
00060 
00061         // Differential equation
00062         DifferentialEquation f;
00063 
00064         // Height of the wave
00065         IntermediateState hw;
00066         hw = h_hw + A_hw*sin(2*M_PI*t/T_hw);
00067         f << dot(h) ==  v;
00068         f << dot(v) ==  rho*A*(hw-h)/m - g - a*v;
00069         f << dot(w) ==  a*v*v;
00070 
00071         // Define an initial value:
00072         // ------------------------
00073         DVector xStart( 3 );
00074         xStart(0) = h_hw - 2.0*A_hw;
00075         xStart(1) = 0.0;
00076         xStart(2) = 0.0;
00077 
00078         Grid timeHorizon( 0.0,25.0 );
00079 
00080     // DEFINE AN INTEGRATOR:
00081     // ---------------------
00082 
00083     IntegrationAlgorithm intAlg;
00084 
00085         intAlg.addStage( f, timeHorizon, INT_RK45 );
00086 
00087         intAlg.set( INTEGRATOR_PRINTLEVEL, MEDIUM );
00088         intAlg.set( PLOT_RESOLUTION, HIGH );
00089         intAlg.set( FREEZE_INTEGRATOR, NO );
00090 
00091         GnuplotWindow window;
00092         window.addSubplot( h );
00093         window.addSubplot( v );
00094         window.addSubplot( w );
00095         
00096         intAlg << window;
00097 
00098         // START THE INTEGRATION:
00099     // ----------------------
00100 
00101         intAlg.integrate( timeHorizon, xStart );
00102 
00103         return 0;
00104 }
00105 
00106 
00107 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Sat Jun 8 2019 19:40:19