00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00034 #include <time.h> 00035 #include <acado_toolkit.hpp> 00036 00037 00038 /* >>> start tutorial code >>> */ 00039 void my_function( double *x_, double *f ){ 00040 00041 // double t = x_[ 0]; // the time 00042 double x = x_[ 1]; // the first differential state 00043 double y = x_[ 2]; // the second differential state 00044 00045 f[0] = x*x + pow(y,3); 00046 } 00047 00048 int main( ){ 00049 00050 USING_NAMESPACE_ACADO 00051 00052 Function f ; 00053 00054 const int dim = 1; // the dimension of the right hand side 00055 const int nt = 1; // the explicit time dependence 00056 const int nx = 2; // the number of differential states 00057 const int na = 0; // the number of algebraic states 00058 const int nu = 0; // the number of controls 00059 const int nv = 0; // the number of integer controls 00060 const int np = 0; // the number of parameters 00061 const int nq = 0; // the number of integer parameters 00062 const int nw = 0; // the number of disturbances 00063 const int ndx = 0; // the number of differential state derivatives 00064 00065 // Code cannot be even compiled! 00066 // f.setCFunction( dim, nt, nx, na, nu, nv, np, nq, nw, ndx, my_function ); 00067 // 00068 // // TEST THE FUNCTION f: 00069 // // -------------------- 00070 // int x_index, y_index; 00071 // 00072 // x_index = f.index(VT_DIFFERENTIAL_STATE,0); 00073 // y_index = f.index(VT_DIFFERENTIAL_STATE,1); 00074 // 00075 // double *xx = new double[f.getNumberOfVariables()+1]; 00076 // double *lambda = new double[f.getNumberOfVariables()+1]; 00077 // double *mu = new double[f.getNumberOfVariables()+1]; 00078 // double *mu_ = new double[f.getNumberOfVariables()+1]; 00079 // double *ff = new double[f.getDim() ]; 00080 // double *df1 = new double[f.getDim() ]; 00081 // double *df2 = new double[f.getDim() ]; 00082 // double *ddf = new double[f.getDim() ]; 00083 // 00084 // df1[0] = 0.0; 00085 // df2[0] = 0.0; 00086 // ddf[0] = 0.0; 00087 // 00088 // xx[x_index] = 1.0; 00089 // xx[y_index] = 1.0; 00090 // 00091 // lambda[x_index] = 0.5; 00092 // lambda[y_index] = 1.0; 00093 // 00094 // mu[x_index] = 1.0; 00095 // mu[y_index] = 0.5; 00096 // 00097 // mu_[x_index] = 0.0; 00098 // mu_[y_index] = 0.0; 00099 // 00100 // // FORWARD DIFFERENTIATION: 00101 // // (FIRST AND SECOND ORDER DERIVATIVES) 00102 // // ------------------------------------ 00103 // f.AD_forward( 0, xx, lambda, ff, df1 ); 00104 // f.AD_forward2( 0, mu, mu_, df2, ddf ); 00105 // 00106 // // PRINT THE RESULTS: 00107 // // ------------------ 00108 // printf(" x = %10.16e \n", xx[x_index] ); 00109 // printf(" y = %10.16e \n", xx[y_index] ); 00110 // printf("lambda_x = %10.16e \n", lambda[x_index] ); 00111 // printf("lambda_y = %10.16e \n", lambda[y_index] ); 00112 // printf("mu_x = %10.16e \n", mu[x_index] ); 00113 // printf("mu_y = %10.16e \n", mu[y_index] ); 00114 // printf(" f = %10.16e \n", ff[0 ] ); 00115 // printf(" df1 = %10.16e \n", df1[0 ] ); 00116 // printf(" df2 = %10.16e \n", df2[0 ] ); 00117 // printf(" ddf = %10.16e \n", ddf[0 ] ); 00118 // 00119 // delete[] xx; 00120 // delete[] lambda; 00121 // delete[] mu; 00122 // delete[] mu_; 00123 // delete[] ff; 00124 // delete[] df1; 00125 // delete[] df2; 00126 // delete[] ddf; 00127 00128 return 0; 00129 } 00130 /* <<< end tutorial code <<< */ 00131 00132