transformation_validation_euclidean.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2010-2011, Willow Garage, Inc.
00006  *  Copyright (c) 2012-, Open Perception, Inc.
00007  *
00008  *  All rights reserved.
00009  *
00010  *  Redistribution and use in source and binary forms, with or without
00011  *  modification, are permitted provided that the following conditions
00012  *  are met:
00013  *
00014  *   * Redistributions of source code must retain the above copyright
00015  *     notice, this list of conditions and the following disclaimer.
00016  *   * Redistributions in binary form must reproduce the above
00017  *     copyright notice, this list of conditions and the following
00018  *     disclaimer in the documentation and/or other materials provided
00019  *     with the distribution.
00020  *   * Neither the name of the copyright holder(s) nor the names of its
00021  *     contributors may be used to endorse or promote products derived
00022  *     from this software without specific prior written permission.
00023  *
00024  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00025  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00026  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00027  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00028  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00029  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00030  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00031  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00032  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00033  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00034  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00035  *  POSSIBILITY OF SUCH DAMAGE.
00036  *
00037  * $Id$
00038  *
00039  */
00040 #ifndef PCL_REGISTRATION_TRANSFORMATION_VALIDATION_EUCLIDEAN_IMPL_H_
00041 #define PCL_REGISTRATION_TRANSFORMATION_VALIDATION_EUCLIDEAN_IMPL_H_
00042 
00044 template <typename PointSource, typename PointTarget, typename Scalar> double
00045 pcl::registration::TransformationValidationEuclidean<PointSource, PointTarget, Scalar>::validateTransformation (
00046   const PointCloudSourceConstPtr &cloud_src,
00047   const PointCloudTargetConstPtr &cloud_tgt,
00048   const Matrix4 &transformation_matrix) const
00049 {
00050   double fitness_score = 0.0;
00051 
00052   // Transform the input dataset using the final transformation
00053   pcl::PointCloud<PointSource> input_transformed;
00054   //transformPointCloud (*cloud_src, input_transformed, transformation_matrix);
00055   input_transformed.resize (cloud_src->size ());
00056   for (size_t i = 0; i < cloud_src->size (); ++i)
00057   {
00058     const PointSource &src = cloud_src->points[i];
00059     PointTarget &tgt = input_transformed.points[i];
00060     tgt.x = static_cast<float> (transformation_matrix (0, 0) * src.x + transformation_matrix (0, 1) * src.y + transformation_matrix (0, 2) * src.z + transformation_matrix (0, 3));
00061     tgt.y = static_cast<float> (transformation_matrix (1, 0) * src.x + transformation_matrix (1, 1) * src.y + transformation_matrix (1, 2) * src.z + transformation_matrix (1, 3));
00062     tgt.z = static_cast<float> (transformation_matrix (2, 0) * src.x + transformation_matrix (2, 1) * src.y + transformation_matrix (2, 2) * src.z + transformation_matrix (2, 3));
00063    }
00064 
00065   typename MyPointRepresentation::ConstPtr point_rep (new MyPointRepresentation);
00066   if (!force_no_recompute_)
00067   {
00068     tree_->setPointRepresentation (point_rep);
00069     tree_->setInputCloud (cloud_tgt);
00070   }
00071 
00072   std::vector<int> nn_indices (1);
00073   std::vector<float> nn_dists (1);
00074 
00075   // For each point in the source dataset
00076   int nr = 0;
00077   for (size_t i = 0; i < input_transformed.points.size (); ++i)
00078   {
00079     // Find its nearest neighbor in the target
00080     tree_->nearestKSearch (input_transformed.points[i], 1, nn_indices, nn_dists);
00081     
00082     // Deal with occlusions (incomplete targets)
00083     if (nn_dists[0] > max_range_)
00084       continue;
00085 
00086     // Calculate the fitness score
00087     fitness_score += nn_dists[0];
00088     ++nr;
00089   }
00090 
00091   if (nr > 0)
00092     return (fitness_score / nr);
00093   else
00094     return (std::numeric_limits<double>::max ());
00095 }
00096 
00097 #endif    // PCL_REGISTRATION_TRANSFORMATION_VALIDATION_EUCLIDEAN_IMPL_H_
00098 


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:37:05