test_correspondence_estimation.cpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2010-2012, Willow Garage, Inc.
00006  *
00007  *  All rights reserved.
00008  *
00009  *  Redistribution and use in source and binary forms, with or without
00010  *  modification, are permitted provided that the following conditions
00011  *  are met:
00012  *
00013  *   * Redistributions of source code must retain the above copyright
00014  *     notice, this list of conditions and the following disclaimer.
00015  *   * Redistributions in binary form must reproduce the above
00016  *     copyright notice, this list of conditions and the following
00017  *     disclaimer in the documentation and/or other materials provided
00018  *     with the distribution.
00019  *   * Neither the name of the copyright holder(s) nor the names of its
00020  *     contributors may be used to endorse or promote products derived
00021  *     from this software without specific prior written permission.
00022  *
00023  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00024  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00025  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00026  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00027  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00028  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00029  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00033  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034  *  POSSIBILITY OF SUCH DAMAGE.
00035  *
00036  */
00037 
00038 #include <gtest/gtest.h>
00039 #include <pcl/io/pcd_io.h>
00040 #include <pcl/registration/correspondence_estimation_normal_shooting.h>
00041 #include <pcl/features/normal_3d.h>
00042 #include <pcl/kdtree/kdtree.h>
00043 
00045 TEST (CorrespondenceEstimation, CorrespondenceEstimationNormalShooting)
00046 {
00047   pcl::PointCloud<pcl::PointXYZ>::Ptr cloud1 (new pcl::PointCloud<pcl::PointXYZ> ());
00048   pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2 (new pcl::PointCloud<pcl::PointXYZ> ());
00049 
00050   // Defining two parallel planes differing only by the y co-ordinate
00051   for (float i = 0.0f; i < 10.0f; i += 0.2f)
00052   {
00053     for (float z = 0.0f; z < 5.0f; z += 0.2f)
00054     {
00055       cloud1->points.push_back (pcl::PointXYZ (i, 0, z));
00056       cloud2->points.push_back (pcl::PointXYZ (i, 2, z)); // Ideally this should be the corresponding point to the point defined in the previous line
00057     }
00058   }
00059         
00060   pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
00061   ne.setInputCloud (cloud1); 
00062 
00063   pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
00064   ne.setSearchMethod (tree);
00065 
00066   pcl::PointCloud<pcl::Normal>::Ptr cloud1_normals (new pcl::PointCloud<pcl::Normal>);
00067   ne.setKSearch (5);
00068   ne.compute (*cloud1_normals); // All normals are perpendicular to the plane defined
00069 
00070   pcl::CorrespondencesPtr corr (new pcl::Correspondences);
00071   pcl::registration::CorrespondenceEstimationNormalShooting <pcl::PointXYZ, pcl::PointXYZ, pcl::Normal> ce;
00072   ce.setInputSource (cloud1);
00073   ce.setKSearch (10);
00074   ce.setSourceNormals (cloud1_normals);
00075   ce.setInputTarget (cloud2);
00076   ce.determineCorrespondences (*corr);
00077 
00078   // Based on the data defined, the correspondence indices should be 1 <-> 1 , 2 <-> 2 , 3 <-> 3 etc.
00079   for (unsigned int i = 0; i < corr->size (); i++)
00080   {
00081     EXPECT_EQ ((*corr)[i].index_query, (*corr)[i].index_match);
00082   }
00083 }
00084 
00086 TEST (CorrespondenceEstimation, CorrespondenceEstimationSetSearchMethod)
00087 {
00088   // Generating 3 random clouds
00089   pcl::PointCloud<pcl::PointXYZ>::Ptr cloud1 (new pcl::PointCloud<pcl::PointXYZ> ());
00090   pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2 (new pcl::PointCloud<pcl::PointXYZ> ());
00091   for ( size_t i = 0; i < 50; i++ )
00092   {
00093     cloud1->points.push_back(pcl::PointXYZ(float (rand()), float (rand()), float (rand())));
00094     cloud2->points.push_back(pcl::PointXYZ(float (rand()), float (rand()), float (rand())));
00095   }
00096   // Build a KdTree for each
00097   pcl::search::KdTree<pcl::PointXYZ>::Ptr tree1 (new pcl::search::KdTree<pcl::PointXYZ> ());
00098   tree1->setInputCloud (cloud1);
00099   pcl::search::KdTree<pcl::PointXYZ>::Ptr tree2 (new pcl::search::KdTree<pcl::PointXYZ> ());
00100   tree2->setInputCloud (cloud2);
00101   // Compute correspondences
00102   pcl::registration::CorrespondenceEstimation<pcl::PointXYZ, pcl::PointXYZ, double> ce;
00103   ce.setInputSource (cloud1);
00104   ce.setInputTarget (cloud2);
00105   pcl::Correspondences corr_orig;
00106   ce.determineCorrespondences(corr_orig);
00107   // Now set the kd trees
00108   ce.setSearchMethodSource (tree1, true);
00109   ce.setSearchMethodTarget (tree2, true);
00110   pcl::Correspondences corr_cached;
00111   ce.determineCorrespondences (corr_cached);
00112   // Ensure they're the same
00113   EXPECT_EQ(corr_orig.size(), corr_cached.size());
00114   for(size_t i = 0; i < corr_orig.size(); i++)
00115   {
00116     EXPECT_EQ(corr_orig[i].index_query, corr_cached[i].index_query);
00117     EXPECT_EQ(corr_orig[i].index_match, corr_cached[i].index_match);
00118   }
00119   
00120 }
00121 
00122 /* ---[ */
00123 int
00124   main (int argc, char** argv)
00125 {
00126   testing::InitGoogleTest (&argc, argv);
00127   return (RUN_ALL_TESTS ());
00128 }
00129 /* ]--- */


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:34:39