Public Types | Public Member Functions | Public Attributes
pcl::ism::ImplicitShapeModelEstimation< FeatureSize, PointT, NormalT >::TC Struct Reference

This structure is used for determining the end of the k-means clustering process. More...

#include <implicit_shape_model.h>

List of all members.

Public Types

enum  { COUNT = 1, EPS = 2 }

Public Member Functions

 TC (int type, int max_count, float epsilon)
 Termination criteria constructor.

Public Attributes

float epsilon_
 Defines the accuracy for k-means clustering.
int max_count_
 Defines maximum number of iterations for k-means clustering.
int type_
 Flag that determines when the k-means clustering must be stopped. If type_ equals COUNT then it must be stopped when the max number of iterations will be reached. If type_ eaquals EPS then it must be stopped when the desired accuracy will be reached. These flags can be used together, in that case the clustering will be finished when one of these conditions will be reached.

Detailed Description

template<int FeatureSize, typename PointT, typename NormalT = pcl::Normal>
struct pcl::ism::ImplicitShapeModelEstimation< FeatureSize, PointT, NormalT >::TC

This structure is used for determining the end of the k-means clustering process.

Definition at line 278 of file implicit_shape_model.h.


Member Enumeration Documentation

template<int FeatureSize, typename PointT, typename NormalT = pcl::Normal>
anonymous enum
Enumerator:
COUNT 
EPS 

Definition at line 280 of file implicit_shape_model.h.


Constructor & Destructor Documentation

template<int FeatureSize, typename PointT, typename NormalT = pcl::Normal>
pcl::ism::ImplicitShapeModelEstimation< FeatureSize, PointT, NormalT >::TC::TC ( int  type,
int  max_count,
float  epsilon 
) [inline]

Termination criteria constructor.

Parameters:
[in]typedefines the condition of termination(max iter., desired accuracy)
[in]max_countdefines the max number of iterations
[in]epsilondefines the desired accuracy

Definition at line 291 of file implicit_shape_model.h.


Member Data Documentation

template<int FeatureSize, typename PointT, typename NormalT = pcl::Normal>
float pcl::ism::ImplicitShapeModelEstimation< FeatureSize, PointT, NormalT >::TC::epsilon_

Defines the accuracy for k-means clustering.

Definition at line 308 of file implicit_shape_model.h.

template<int FeatureSize, typename PointT, typename NormalT = pcl::Normal>
int pcl::ism::ImplicitShapeModelEstimation< FeatureSize, PointT, NormalT >::TC::max_count_

Defines maximum number of iterations for k-means clustering.

Definition at line 305 of file implicit_shape_model.h.

template<int FeatureSize, typename PointT, typename NormalT = pcl::Normal>
int pcl::ism::ImplicitShapeModelEstimation< FeatureSize, PointT, NormalT >::TC::type_

Flag that determines when the k-means clustering must be stopped. If type_ equals COUNT then it must be stopped when the max number of iterations will be reached. If type_ eaquals EPS then it must be stopped when the desired accuracy will be reached. These flags can be used together, in that case the clustering will be finished when one of these conditions will be reached.

Definition at line 294 of file implicit_shape_model.h.


The documentation for this struct was generated from the following file:


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:44:11