00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036 #include "ErrorMinimizersImpl.h"
00037 #include "PointMatcherPrivate.h"
00038 #include "Functions.h"
00039
00040 #include "Eigen/SVD"
00041 #include <iostream>
00042
00043 using namespace Eigen;
00044 using namespace std;
00045 using namespace PointMatcherSupport;
00046
00047
00048 template<typename T>
00049 typename PointMatcher<T>::TransformationParameters ErrorMinimizersImpl<T>::IdentityErrorMinimizer::compute(
00050 const DataPoints& filteredReading,
00051 const DataPoints& filteredReference,
00052 const OutlierWeights& outlierWeights,
00053 const Matches& matches)
00054 {
00055 return TransformationParameters::Identity(filteredReading.features.rows(), filteredReading.features.rows());
00056 }
00057
00058 template struct ErrorMinimizersImpl<float>::IdentityErrorMinimizer;
00059 template struct ErrorMinimizersImpl<double>::IdentityErrorMinimizer;
00060
00061
00062
00063 template<typename T>
00064 typename PointMatcher<T>::TransformationParameters ErrorMinimizersImpl<T>::PointToPointErrorMinimizer::compute(
00065 const DataPoints& filteredReading,
00066 const DataPoints& filteredReference,
00067 const OutlierWeights& outlierWeights,
00068 const Matches& matches)
00069 {
00070 assert(matches.ids.rows() > 0);
00071
00072 typename ErrorMinimizer::ErrorElements& mPts = this->getMatchedPoints(filteredReading, filteredReference, matches, outlierWeights);
00073
00074
00075 const int dimCount(mPts.reading.features.rows());
00076 const int ptsCount(mPts.reading.features.cols());
00077
00078
00079 const Vector meanReading = mPts.reading.features.rowwise().sum() / ptsCount;
00080 const Vector meanReference = mPts.reference.features.rowwise().sum() / ptsCount;
00081
00082
00083 mPts.reading.features.colwise() -= meanReading;
00084 mPts.reference.features.colwise() -= meanReference;
00085
00086
00087 const Matrix m(mPts.reference.features.topRows(dimCount-1) * mPts.reading.features.topRows(dimCount-1).transpose());
00088 const JacobiSVD<Matrix> svd(m, ComputeThinU | ComputeThinV);
00089 const Matrix rotMatrix(svd.matrixU() * svd.matrixV().transpose());
00090 const Vector trVector(meanReference.head(dimCount-1)- rotMatrix * meanReading.head(dimCount-1));
00091
00092 Matrix result(Matrix::Identity(dimCount, dimCount));
00093 result.topLeftCorner(dimCount-1, dimCount-1) = rotMatrix;
00094 result.topRightCorner(dimCount-1, 1) = trVector;
00095
00096 return result;
00097 }
00098
00099 template<typename T>
00100 T ErrorMinimizersImpl<T>::PointToPointErrorMinimizer::getOverlap() const
00101 {
00102
00103
00104
00105 const int nbPoints = this->lastErrorElements.reading.features.cols();
00106 const int dim = this->lastErrorElements.reading.features.rows();
00107 if(nbPoints == 0)
00108 {
00109 throw std::runtime_error("Error, last error element empty. Error minimizer needs to be called at least once before using this method.");
00110 }
00111
00112 if (!this->lastErrorElements.reading.descriptorExists("simpleSensorNoise"))
00113 {
00114 LOG_INFO_STREAM("PointToPointErrorMinimizer - warning, no sensor noise found. Using best estimate given outlier rejection instead.");
00115 return this->weightedPointUsedRatio;
00116 }
00117
00118 const BOOST_AUTO(noises, this->lastErrorElements.reading.getDescriptorViewByName("simpleSensorNoise"));
00119
00120 const Vector dists = (this->lastErrorElements.reading.features.topRows(dim-1) - this->lastErrorElements.reference.features.topRows(dim-1)).colwise().norm();
00121 const T mean = dists.sum()/nbPoints;
00122
00123 int count = 0;
00124 for(int i=0; i < nbPoints; i++)
00125 {
00126 if(dists(i) < (mean + noises(0,i)))
00127 {
00128 count++;
00129 }
00130 }
00131
00132 return (T)count/(T)nbPoints;
00133 }
00134
00135 template struct ErrorMinimizersImpl<float>::PointToPointErrorMinimizer;
00136 template struct ErrorMinimizersImpl<double>::PointToPointErrorMinimizer;
00137
00138
00139
00140 template<typename T>
00141 ErrorMinimizersImpl<T>::PointToPlaneErrorMinimizer::PointToPlaneErrorMinimizer(const Parameters& params):
00142 ErrorMinimizer("PointToPlaneErrorMinimizer", PointToPlaneErrorMinimizer::availableParameters(), params),
00143 force2D(Parametrizable::get<T>("force2D"))
00144 {
00145 }
00146
00147
00148 template<typename T>
00149 typename PointMatcher<T>::TransformationParameters ErrorMinimizersImpl<T>::PointToPlaneErrorMinimizer::compute(
00150 const DataPoints& filteredReading,
00151 const DataPoints& filteredReference,
00152 const OutlierWeights& outlierWeights,
00153 const Matches& matches)
00154 {
00155 assert(matches.ids.rows() > 0);
00156
00157
00158 typename ErrorMinimizer::ErrorElements& mPts = this->getMatchedPoints(filteredReading, filteredReference, matches, outlierWeights);
00159
00160 const int dim = mPts.reading.features.rows();
00161 const int nbPts = mPts.reading.features.cols();
00162
00163
00164 int forcedDim = dim - 1;
00165 if(force2D && dim == 4)
00166 {
00167 mPts.reading.features.conservativeResize(3, Eigen::NoChange);
00168 mPts.reading.features.row(2) = Matrix::Ones(1, nbPts);
00169 mPts.reference.features.conservativeResize(3, Eigen::NoChange);
00170 mPts.reference.features.row(2) = Matrix::Ones(1, nbPts);
00171 forcedDim = dim - 2;
00172 }
00173
00174
00175 const BOOST_AUTO(normalRef, mPts.reference.getDescriptorViewByName("normals").topRows(forcedDim));
00176
00177
00178 assert(normalRef.rows() > 0);
00179
00180
00181 const Matrix cross = this->crossProduct(mPts.reading.features, normalRef);
00182
00183
00184
00185 Matrix wF(normalRef.rows()+ cross.rows(), normalRef.cols());
00186 Matrix F(normalRef.rows()+ cross.rows(), normalRef.cols());
00187
00188 for(int i=0; i < cross.rows(); i++)
00189 {
00190 wF.row(i) = mPts.weights.array() * cross.row(i).array();
00191 F.row(i) = cross.row(i);
00192 }
00193 for(int i=0; i < normalRef.rows(); i++)
00194 {
00195 wF.row(i + cross.rows()) = mPts.weights.array() * normalRef.row(i).array();
00196 F.row(i + cross.rows()) = normalRef.row(i);
00197 }
00198
00199
00200 const Matrix A = wF * F.transpose();
00201 if (A.fullPivHouseholderQr().rank() != A.rows())
00202 {
00203
00204
00205 }
00206
00207 const Matrix deltas = mPts.reading.features - mPts.reference.features;
00208
00209
00210 Matrix dotProd = Matrix::Zero(1, normalRef.cols());
00211
00212 for(int i=0; i<normalRef.rows(); i++)
00213 {
00214 dotProd += (deltas.row(i).array() * normalRef.row(i).array()).matrix();
00215 }
00216
00217
00218 const Vector b = -(wF * dotProd.transpose());
00219
00220
00221 Vector x(A.rows());
00222 x = A.llt().solve(b);
00223
00224
00225 Matrix mOut;
00226 if(dim == 4 && !force2D)
00227 {
00228 Eigen::Transform<T, 3, Eigen::Affine> transform;
00229
00230
00231
00232
00233
00234
00235 transform = Eigen::AngleAxis<T>(x.head(3).norm(),x.head(3).normalized());
00236
00237
00238
00239
00240
00241
00242 transform.translation() = x.segment(3, 3);
00243 mOut = transform.matrix();
00244 }
00245 else
00246 {
00247 Eigen::Transform<T, 2, Eigen::Affine> transform;
00248 transform = Eigen::Rotation2D<T> (x(0));
00249 transform.translation() = x.segment(1, 2);
00250
00251 if(force2D)
00252 {
00253 mOut = Matrix::Identity(dim, dim);
00254 mOut.topLeftCorner(2, 2) = transform.matrix().topLeftCorner(2, 2);
00255 mOut.topRightCorner(2, 1) = transform.matrix().topRightCorner(2, 1);
00256 }
00257 else
00258 {
00259 mOut = transform.matrix();
00260 }
00261 }
00262 return mOut;
00263 }
00264
00265 template<typename T>
00266 T ErrorMinimizersImpl<T>::PointToPlaneErrorMinimizer::getOverlap() const
00267 {
00268 const int nbPoints = this->lastErrorElements.reading.features.cols();
00269 const int dim = this->lastErrorElements.reading.features.rows();
00270 if(nbPoints == 0)
00271 {
00272 throw std::runtime_error("Error, last error element empty. Error minimizer needs to be called at least once before using this method.");
00273 }
00274
00275 if (!this->lastErrorElements.reading.descriptorExists("simpleSensorNoise") ||
00276 !this->lastErrorElements.reading.descriptorExists("normals"))
00277 {
00278 LOG_INFO_STREAM("PointToPlaneErrorMinimizer - warning, no sensor noise or normals found. Using best estimate given outlier rejection instead.");
00279 return this->weightedPointUsedRatio;
00280 }
00281
00282 const BOOST_AUTO(noises, this->lastErrorElements.reading.getDescriptorViewByName("simpleSensorNoise"));
00283 const BOOST_AUTO(normals, this->lastErrorElements.reading.getDescriptorViewByName("normals"));
00284
00285
00286 const Matrix delta = (this->lastErrorElements.reading.features.topRows(dim-1) - this->lastErrorElements.reference.features.topRows(dim-1));
00287 const T mean = delta.colwise().norm().sum()/nbPoints;
00288 cerr << "mean:" << mean << endl;
00289
00290 int count = 0;
00291 for(int i=0; i < nbPoints; i++)
00292 {
00293 const Vector n = normals.col(i);
00294 const T projectionDist = delta.col(i).dot(n.normalized());
00295 if(anyabs(projectionDist) < (mean + noises(0,i)))
00296 {
00297 count++;
00298 }
00299 }
00300
00301 return (T)count/(T)nbPoints;
00302 }
00303
00304 template struct ErrorMinimizersImpl<float>::PointToPlaneErrorMinimizer;
00305 template struct ErrorMinimizersImpl<double>::PointToPlaneErrorMinimizer;
00306
00307
00308
00309
00310 template<typename T>
00311 ErrorMinimizersImpl<T>::PointToPointWithCovErrorMinimizer::PointToPointWithCovErrorMinimizer(const Parameters& params):
00312 ErrorMinimizer("PointToPointWithCovErrorMinimizer", PointToPointWithCovErrorMinimizer::availableParameters(), params),
00313 sensorStdDev(Parametrizable::get<T>("sensorStdDev"))
00314 {
00315 }
00316
00317 template<typename T>
00318 typename PointMatcher<T>::TransformationParameters ErrorMinimizersImpl<T>::PointToPointWithCovErrorMinimizer::compute(
00319 const DataPoints& filteredReading,
00320 const DataPoints& filteredReference,
00321 const OutlierWeights& outlierWeights,
00322 const Matches& matches)
00323 {
00324 assert(matches.ids.rows() > 0);
00325
00326 typename ErrorMinimizer::ErrorElements& mPts = this->getMatchedPoints(filteredReading, filteredReference, matches, outlierWeights);
00327
00328
00329 const int dimCount(mPts.reading.features.rows());
00330 const int ptsCount(mPts.reading.features.cols());
00331
00332
00333 const Vector meanReading = mPts.reading.features.rowwise().sum() / ptsCount;
00334 const Vector meanReference = mPts.reference.features.rowwise().sum() / ptsCount;
00335
00336
00337 mPts.reading.features.colwise() -= meanReading;
00338 mPts.reference.features.colwise() -= meanReference;
00339
00340
00341 const Matrix m(mPts.reference.features.topRows(dimCount-1) * mPts.reading.features.topRows(dimCount-1).transpose());
00342 const JacobiSVD<Matrix> svd(m, ComputeThinU | ComputeThinV);
00343 const Matrix rotMatrix(svd.matrixU() * svd.matrixV().transpose());
00344 const Vector trVector(meanReference.head(dimCount-1)- rotMatrix * meanReading.head(dimCount-1));
00345
00346 Matrix result(Matrix::Identity(dimCount, dimCount));
00347 result.topLeftCorner(dimCount-1, dimCount-1) = rotMatrix;
00348 result.topRightCorner(dimCount-1, 1) = trVector;
00349
00350 this->covMatrix = this->estimateCovariance(filteredReading, filteredReference, matches, outlierWeights, result);
00351
00352 return result;
00353 }
00354
00355 template<typename T>
00356 typename ErrorMinimizersImpl<T>::Matrix
00357 ErrorMinimizersImpl<T>::PointToPointWithCovErrorMinimizer::estimateCovariance(const DataPoints& reading, const DataPoints& reference, const Matches& matches, const OutlierWeights& outlierWeights, const TransformationParameters& transformation)
00358 {
00359 int max_nbr_point = outlierWeights.cols();
00360
00361 Matrix covariance(Matrix::Zero(6,6));
00362 Matrix J_hessian(Matrix::Zero(6,6));
00363 Matrix d2J_dReadingdX(Matrix::Zero(6, max_nbr_point));
00364 Matrix d2J_dReferencedX(Matrix::Zero(6, max_nbr_point));
00365
00366 Vector reading_point(Vector::Zero(3));
00367 Vector reference_point(Vector::Zero(3));
00368 Vector normal(3);
00369 Vector reading_direction(Vector::Zero(3));
00370 Vector reference_direction(Vector::Zero(3));
00371
00372 normal << 1.0, 1.0, 1.0;
00373
00374 T beta = -asin(transformation(2,0));
00375 T alpha = atan2(transformation(2,1), transformation(2,2));
00376 T gamma = atan2(transformation(1,0)/cos(beta), transformation(0,0)/cos(beta));
00377 T t_x = transformation(0,3);
00378 T t_y = transformation(1,3);
00379 T t_z = transformation(2,3);
00380
00381 Vector tmp_vector_6(Vector::Zero(6));
00382
00383 int valid_points_count = 0;
00384
00385 for(int i = 0; i < max_nbr_point; ++i)
00386 {
00387 if (outlierWeights(0,i) > 0.0)
00388 {
00389 reading_point = reading.features.block(0,i,3,1);
00390 int reference_idx = matches.ids(0,i);
00391 reference_point = reference.features.block(0,reference_idx,3,1);
00392
00393 T reading_range = reading_point.norm();
00394 reading_direction = reading_point / reading_range;
00395 T reference_range = reference_point.norm();
00396 reference_direction = reference_point / reference_range;
00397
00398 T n_alpha = normal(2)*reading_direction(1) - normal(1)*reading_direction(2);
00399 T n_beta = normal(0)*reading_direction(2) - normal(2)*reading_direction(0);
00400 T n_gamma = normal(1)*reading_direction(0) - normal(0)*reading_direction(1);
00401
00402 T E = normal(0)*(reading_point(0) - gamma*reading_point(1) + beta*reading_point(2) + t_x - reference_point(0));
00403 E += normal(1)*(gamma*reading_point(0) + reading_point(1) - alpha*reading_point(2) + t_y - reference_point(1));
00404 E += normal(2)*(-beta*reading_point(0) + alpha*reading_point(1) + reading_point(2) + t_z - reference_point(2));
00405
00406 T N_reading = normal(0)*(reading_direction(0) - gamma*reading_direction(1) + beta*reading_direction(2));
00407 N_reading += normal(1)*(gamma*reading_direction(0) + reading_direction(1) - alpha*reading_direction(2));
00408 N_reading += normal(2)*(-beta*reading_direction(0) + alpha*reading_direction(1) + reading_direction(2));
00409
00410 T N_reference = -(normal(0)*reference_direction(0) + normal(1)*reference_direction(1) + normal(2)*reference_direction(2));
00411
00412
00413 tmp_vector_6 << normal(0), normal(1), normal(2), reading_range * n_alpha, reading_range * n_beta, reading_range * n_gamma;
00414
00415 J_hessian += tmp_vector_6 * tmp_vector_6.transpose();
00416
00417 tmp_vector_6 << normal(0) * N_reading, normal(1) * N_reading, normal(2) * N_reading, n_alpha * (E + reading_range * N_reading), n_beta * (E + reading_range * N_reading), n_gamma * (E + reading_range * N_reading);
00418
00419 d2J_dReadingdX.block(0,valid_points_count,6,1) = tmp_vector_6;
00420
00421 tmp_vector_6 << normal(0) * N_reference, normal(1) * N_reference, normal(2) * N_reference, reference_range * n_alpha * N_reference, reference_range * n_beta * N_reference, reference_range * n_gamma * N_reference;
00422
00423 d2J_dReferencedX.block(0,valid_points_count,6,1) = tmp_vector_6;
00424
00425 valid_points_count++;
00426 }
00427 }
00428
00429 Matrix d2J_dZdX(Matrix::Zero(6, 2 * valid_points_count));
00430 d2J_dZdX.block(0,0,6,valid_points_count) = d2J_dReadingdX.block(0,0,6,valid_points_count);
00431 d2J_dZdX.block(0,valid_points_count,6,valid_points_count) = d2J_dReferencedX.block(0,0,6,valid_points_count);
00432
00433 Matrix inv_J_hessian = J_hessian.inverse();
00434
00435 covariance = d2J_dZdX * d2J_dZdX.transpose();
00436 covariance = inv_J_hessian * covariance * inv_J_hessian;
00437
00438 return (sensorStdDev * sensorStdDev) * covariance;
00439 }
00440
00441 template<typename T>
00442 T ErrorMinimizersImpl<T>::PointToPointWithCovErrorMinimizer::getOverlap() const
00443 {
00444 const int nbPoints = this->lastErrorElements.reading.features.cols();
00445 if(nbPoints == 0)
00446 {
00447 throw std::runtime_error("Error, last error element empty. Error minimizer needs to be called at least once before using this method.");
00448 }
00449
00450 if (!this->lastErrorElements.reading.descriptorExists("simpleSensorNoise"))
00451 {
00452 LOG_INFO_STREAM("PointToPointErrorMinimizer - warning, no sensor noise found. Using best estimate given outlier rejection instead.");
00453 return this->weightedPointUsedRatio;
00454 }
00455
00456 const BOOST_AUTO(noises, this->lastErrorElements.reading.getDescriptorViewByName("simpleSensorNoise"));
00457 int count = 0;
00458 for(int i=0; i < nbPoints; i++)
00459 {
00460 const T dist = (this->lastErrorElements.reading.features.col(i) - this->lastErrorElements.reference.features.col(i)).norm();
00461 if(dist < noises(0,i))
00462 count++;
00463
00464 }
00465
00466 return (T)count/(T)nbPoints;
00467 }
00468
00469 template<typename T>
00470 typename ErrorMinimizersImpl<T>::Matrix ErrorMinimizersImpl<T>::PointToPointWithCovErrorMinimizer::getCovariance() const
00471 {
00472 return covMatrix;
00473 }
00474
00475 template struct ErrorMinimizersImpl<float>::PointToPointWithCovErrorMinimizer;
00476 template struct ErrorMinimizersImpl<double>::PointToPointWithCovErrorMinimizer;
00477
00478
00479
00480 template<typename T>
00481 ErrorMinimizersImpl<T>::PointToPlaneWithCovErrorMinimizer::PointToPlaneWithCovErrorMinimizer(const Parameters& params):
00482 ErrorMinimizer("PointToPlaneWithCovErrorMinimizer", PointToPlaneWithCovErrorMinimizer::availableParameters(), params),
00483 force2D(Parametrizable::get<T>("force2D")),
00484 sensorStdDev(Parametrizable::get<T>("sensorStdDev"))
00485 {
00486 }
00487
00488
00489 template<typename T>
00490 typename PointMatcher<T>::TransformationParameters ErrorMinimizersImpl<T>::PointToPlaneWithCovErrorMinimizer::compute(
00491 const DataPoints& filteredReading,
00492 const DataPoints& filteredReference,
00493 const OutlierWeights& outlierWeights,
00494 const Matches& matches)
00495 {
00496 assert(matches.ids.rows() > 0);
00497
00498
00499 typename ErrorMinimizer::ErrorElements& mPts = this->getMatchedPoints(filteredReading, filteredReference, matches, outlierWeights);
00500
00501 const int dim = mPts.reading.features.rows();
00502 const int nbPts = mPts.reading.features.cols();
00503
00504
00505 int forcedDim = dim - 1;
00506 if(force2D && dim == 4)
00507 {
00508 mPts.reading.features.conservativeResize(3, Eigen::NoChange);
00509 mPts.reading.features.row(2) = Matrix::Ones(1, nbPts);
00510 mPts.reference.features.conservativeResize(3, Eigen::NoChange);
00511 mPts.reference.features.row(2) = Matrix::Ones(1, nbPts);
00512 forcedDim = dim - 2;
00513 }
00514
00515
00516 const BOOST_AUTO(normalRef, mPts.reference.getDescriptorViewByName("normals").topRows(forcedDim));
00517
00518
00519 assert(normalRef.rows() > 0);
00520
00521
00522 const Matrix cross = this->crossProduct(mPts.reading.features, normalRef);
00523
00524
00525
00526 Matrix wF(normalRef.rows()+ cross.rows(), normalRef.cols());
00527 Matrix F(normalRef.rows()+ cross.rows(), normalRef.cols());
00528
00529 for(int i=0; i < cross.rows(); i++)
00530 {
00531 wF.row(i) = mPts.weights.array() * cross.row(i).array();
00532 F.row(i) = cross.row(i);
00533 }
00534 for(int i=0; i < normalRef.rows(); i++)
00535 {
00536 wF.row(i + cross.rows()) = mPts.weights.array() * normalRef.row(i).array();
00537 F.row(i + cross.rows()) = normalRef.row(i);
00538 }
00539
00540
00541 const Matrix A = wF * F.transpose();
00542 if (A.fullPivHouseholderQr().rank() != A.rows())
00543 {
00544
00545
00546 }
00547
00548 const Matrix deltas = mPts.reading.features - mPts.reference.features;
00549
00550
00551 Matrix dotProd = Matrix::Zero(1, normalRef.cols());
00552
00553 for(int i=0; i<normalRef.rows(); i++)
00554 {
00555 dotProd += (deltas.row(i).array() * normalRef.row(i).array()).matrix();
00556 }
00557
00558
00559 const Vector b = -(wF * dotProd.transpose());
00560
00561
00562 Vector x(A.rows());
00563 x = A.llt().solve(b);
00564
00565
00566 Matrix mOut;
00567 if(dim == 4 && !force2D)
00568 {
00569 Eigen::Transform<T, 3, Eigen::Affine> transform;
00570
00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581 transform = Eigen::AngleAxis<T>(x.head(3).norm(),x.head(3).normalized());
00582 transform.translation() = x.segment(3, 3);
00583 mOut = transform.matrix();
00584 }
00585 else
00586 {
00587 Eigen::Transform<T, 2, Eigen::Affine> transform;
00588 transform = Eigen::Rotation2D<T> (x(0));
00589 transform.translation() = x.segment(1, 2);
00590
00591 if(force2D)
00592 {
00593 mOut = Matrix::Identity(dim, dim);
00594 mOut.topLeftCorner(2, 2) = transform.matrix().topLeftCorner(2, 2);
00595 mOut.topRightCorner(2, 1) = transform.matrix().topRightCorner(2, 1);
00596 }
00597 else
00598 {
00599 mOut = transform.matrix();
00600 }
00601 }
00602
00603 this->covMatrix = this->estimateCovariance(filteredReading, filteredReference, matches, outlierWeights, mOut);
00604
00605 return mOut;
00606 }
00607
00608 template<typename T>
00609 typename ErrorMinimizersImpl<T>::Matrix
00610 ErrorMinimizersImpl<T>::PointToPlaneWithCovErrorMinimizer::estimateCovariance(const DataPoints& reading, const DataPoints& reference, const Matches& matches, const OutlierWeights& outlierWeights, const TransformationParameters& transformation)
00611 {
00612 int max_nbr_point = outlierWeights.cols();
00613
00614 Matrix covariance(Matrix::Zero(6,6));
00615 Matrix J_hessian(Matrix::Zero(6,6));
00616 Matrix d2J_dReadingdX(Matrix::Zero(6, max_nbr_point));
00617 Matrix d2J_dReferencedX(Matrix::Zero(6, max_nbr_point));
00618
00619 Vector reading_point(Vector::Zero(3));
00620 Vector reference_point(Vector::Zero(3));
00621 Vector normal(3);
00622 Vector reading_direction(Vector::Zero(3));
00623 Vector reference_direction(Vector::Zero(3));
00624
00625 Matrix normals = reference.getDescriptorViewByName("normals");
00626
00627 if (normals.rows() < 3)
00628 return std::numeric_limits<T>::max() * Matrix::Identity(6,6);
00629
00630 T beta = -asin(transformation(2,0));
00631 T alpha = atan2(transformation(2,1), transformation(2,2));
00632 T gamma = atan2(transformation(1,0)/cos(beta), transformation(0,0)/cos(beta));
00633 T t_x = transformation(0,3);
00634 T t_y = transformation(1,3);
00635 T t_z = transformation(2,3);
00636
00637 Vector tmp_vector_6(Vector::Zero(6));
00638
00639 int valid_points_count = 0;
00640
00641 for(int i = 0; i < max_nbr_point; ++i)
00642 {
00643 if (outlierWeights(0,i) > 0.0)
00644 {
00645 reading_point = reading.features.block(0,i,3,1);
00646 int reference_idx = matches.ids(0,i);
00647 reference_point = reference.features.block(0,reference_idx,3,1);
00648
00649 normal = normals.block(0,reference_idx,3,1);
00650
00651 T reading_range = reading_point.norm();
00652 reading_direction = reading_point / reading_range;
00653 T reference_range = reference_point.norm();
00654 reference_direction = reference_point / reference_range;
00655
00656 T n_alpha = normal(2)*reading_direction(1) - normal(1)*reading_direction(2);
00657 T n_beta = normal(0)*reading_direction(2) - normal(2)*reading_direction(0);
00658 T n_gamma = normal(1)*reading_direction(0) - normal(0)*reading_direction(1);
00659
00660 T E = normal(0)*(reading_point(0) - gamma*reading_point(1) + beta*reading_point(2) + t_x - reference_point(0));
00661 E += normal(1)*(gamma*reading_point(0) + reading_point(1) - alpha*reading_point(2) + t_y - reference_point(1));
00662 E += normal(2)*(-beta*reading_point(0) + alpha*reading_point(1) + reading_point(2) + t_z - reference_point(2));
00663
00664 T N_reading = normal(0)*(reading_direction(0) - gamma*reading_direction(1) + beta*reading_direction(2));
00665 N_reading += normal(1)*(gamma*reading_direction(0) + reading_direction(1) - alpha*reading_direction(2));
00666 N_reading += normal(2)*(-beta*reading_direction(0) + alpha*reading_direction(1) + reading_direction(2));
00667
00668 T N_reference = -(normal(0)*reference_direction(0) + normal(1)*reference_direction(1) + normal(2)*reference_direction(2));
00669
00670
00671 tmp_vector_6 << normal(0), normal(1), normal(2), reading_range * n_alpha, reading_range * n_beta, reading_range * n_gamma;
00672
00673 J_hessian += tmp_vector_6 * tmp_vector_6.transpose();
00674
00675 tmp_vector_6 << normal(0) * N_reading, normal(1) * N_reading, normal(2) * N_reading, n_alpha * (E + reading_range * N_reading), n_beta * (E + reading_range * N_reading), n_gamma * (E + reading_range * N_reading);
00676
00677 d2J_dReadingdX.block(0,valid_points_count,6,1) = tmp_vector_6;
00678
00679 tmp_vector_6 << normal(0) * N_reference, normal(1) * N_reference, normal(2) * N_reference, reference_range * n_alpha * N_reference, reference_range * n_beta * N_reference, reference_range * n_gamma * N_reference;
00680
00681 d2J_dReferencedX.block(0,valid_points_count,6,1) = tmp_vector_6;
00682
00683 valid_points_count++;
00684 }
00685 }
00686
00687 Matrix d2J_dZdX(Matrix::Zero(6, 2 * valid_points_count));
00688 d2J_dZdX.block(0,0,6,valid_points_count) = d2J_dReadingdX.block(0,0,6,valid_points_count);
00689 d2J_dZdX.block(0,valid_points_count,6,valid_points_count) = d2J_dReferencedX.block(0,0,6,valid_points_count);
00690
00691 Matrix inv_J_hessian = J_hessian.inverse();
00692
00693 covariance = d2J_dZdX * d2J_dZdX.transpose();
00694 covariance = inv_J_hessian * covariance * inv_J_hessian;
00695
00696 return (sensorStdDev * sensorStdDev) * covariance;
00697 }
00698
00699
00700
00701 template<typename T>
00702 T ErrorMinimizersImpl<T>::PointToPlaneWithCovErrorMinimizer::getOverlap() const
00703 {
00704 const int nbPoints = this->lastErrorElements.reading.features.cols();
00705 const int dim = this->lastErrorElements.reading.features.rows();
00706 if(nbPoints == 0)
00707 {
00708 throw std::runtime_error("Error, last error element empty. Error minimizer needs to be called at least once before using this method.");
00709 }
00710
00711 if (!this->lastErrorElements.reading.descriptorExists("simpleSensorNoise") ||
00712 !this->lastErrorElements.reading.descriptorExists("normals"))
00713 {
00714 LOG_INFO_STREAM("PointToPlaneErrorMinimizer - warning, no sensor noise or normals found. Using best estimate given outlier rejection instead.");
00715 return this->weightedPointUsedRatio;
00716 }
00717
00718 const BOOST_AUTO(noises, this->lastErrorElements.reading.getDescriptorViewByName("simpleSensorNoise"));
00719 const BOOST_AUTO(normals, this->lastErrorElements.reading.getDescriptorViewByName("normals"));
00720 int count = 0;
00721 for(int i=0; i < nbPoints; i++)
00722 {
00723 if(this->lastErrorElements.matches.dists(0, i) != numeric_limits<T>::infinity())
00724 {
00725 const Vector d = this->lastErrorElements.reading.features.col(i) - this->lastErrorElements.reference.features.col(i);
00726 const Vector n = normals.col(i);
00727 const T projectionDist = d.head(dim-1).dot(n.normalized());
00728 if(anyabs(projectionDist) < noises(0,i))
00729 count++;
00730 }
00731 }
00732
00733 return (T)count/(T)nbPoints;
00734 }
00735
00736 template<typename T>
00737 typename ErrorMinimizersImpl<T>::Matrix ErrorMinimizersImpl<T>::PointToPlaneWithCovErrorMinimizer::getCovariance() const
00738 {
00739 return covMatrix;
00740 }
00741
00742 template struct ErrorMinimizersImpl<float>::PointToPlaneWithCovErrorMinimizer;
00743 template struct ErrorMinimizersImpl<double>::PointToPlaneWithCovErrorMinimizer;
00744